wavlm-telugu-binary

This model is a fine-tuned version of microsoft/wavlm-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7316
  • Accuracy: 0.8545
  • F1: 0.8919

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6782 1.0 14 0.6797 0.4727 0.3256
0.6535 2.0 28 0.5998 0.7818 0.8235
0.5762 3.0 42 0.4867 0.8 0.8358
0.4791 4.0 56 0.5116 0.8182 0.8611
0.426 5.0 70 0.5037 0.7818 0.8182
0.374 6.0 84 0.4857 0.8364 0.8696
0.3461 7.0 98 0.4698 0.8182 0.8529
0.3322 8.0 112 0.5055 0.8364 0.88
0.201 9.0 126 0.5055 0.8545 0.8919
0.1993 10.0 140 0.5239 0.8364 0.88
0.2025 11.0 154 0.5181 0.8545 0.8919
0.1417 12.0 168 0.6867 0.8364 0.8861
0.1162 13.0 182 0.7050 0.8364 0.8861
0.1124 14.0 196 0.5492 0.8545 0.8889
0.1183 15.0 210 0.7322 0.8545 0.8974
0.0693 16.0 224 0.7734 0.8545 0.8974
0.0625 17.0 238 0.6903 0.8545 0.8947
0.0803 18.0 252 0.7115 0.8727 0.9091
0.0354 19.0 266 0.7116 0.8364 0.88
0.0486 20.0 280 0.7316 0.8545 0.8919

Framework versions

  • Transformers 4.53.3
  • Pytorch 2.9.1+cu128
  • Datasets 4.4.1
  • Tokenizers 0.21.2
Downloads last month
2
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ramesh070/wavlm-telugu-binary

Finetuned
(22)
this model