train_boolq_123_1762583754

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0732
  • Num Input Tokens Seen: 37859408

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.4523 2.0 3772 0.3295 3786792
0.3608 4.0 7544 0.3171 7579824
0.2307 6.0 11316 0.3416 11360672
0.2267 8.0 15088 0.3523 15150888
0.1659 10.0 18860 0.4134 18940064
0.2084 12.0 22632 0.5529 22734144
0.1017 14.0 26404 0.7290 26510480
0.0012 16.0 30176 0.9381 30297384
0.0006 18.0 33948 1.0485 34080816
0.0009 20.0 37720 1.0732 37859408

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_123_1762583754

Adapter
(2098)
this model

Evaluation results