train_boolq_123_1762589801

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3213
  • Num Input Tokens Seen: 42678144

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.03
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2872 1.0 2121 0.3391 2131904
0.3153 2.0 4242 0.3294 4264768
0.3251 3.0 6363 0.3346 6404896
0.3535 4.0 8484 0.3308 8537088
0.3267 5.0 10605 0.3278 10677088
0.3159 6.0 12726 0.3298 12814080
0.2604 7.0 14847 0.3271 14950432
0.3271 8.0 16968 0.3267 17082336
0.3257 9.0 19089 0.3424 19211360
0.3441 10.0 21210 0.3264 21342336
0.3417 11.0 23331 0.3277 23472352
0.3086 12.0 25452 0.3271 25602144
0.3027 13.0 27573 0.3251 27739072
0.3239 14.0 29694 0.3250 29880544
0.3697 15.0 31815 0.3236 32013760
0.3328 16.0 33936 0.3237 34138272
0.3275 17.0 36057 0.3222 36269152
0.3746 18.0 38178 0.3221 38408800
0.339 19.0 40299 0.3219 40541312
0.2792 20.0 42420 0.3213 42678144

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_123_1762589801

Adapter
(2098)
this model

Evaluation results