train_boolq_123_1762607523

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1726
  • Num Input Tokens Seen: 42678144

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.0239 1.0 2121 0.1726 2131904
0.0891 2.0 4242 0.2051 4264768
0.3352 3.0 6363 0.1879 6404896
0.1306 4.0 8484 0.2322 8537088
0.0016 5.0 10605 0.2283 10677088
0.0041 6.0 12726 0.3797 12814080
0.0 7.0 14847 0.3552 14950432
0.0 8.0 16968 0.3507 17082336
0.1038 9.0 19089 0.3142 19211360
0.0 10.0 21210 0.4128 21342336
0.0007 11.0 23331 0.3758 23472352
0.0 12.0 25452 0.5214 25602144
0.0 13.0 27573 0.6250 27739072
0.0 14.0 29694 0.6645 29880544
0.0 15.0 31815 0.6878 32013760
0.0 16.0 33936 0.7089 34138272
0.0 17.0 36057 0.7214 36269152
0.0 18.0 38178 0.7352 38408800
0.0 19.0 40299 0.7364 40541312
0.0 20.0 42420 0.7314 42678144

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_123_1762607523

Adapter
(2094)
this model

Evaluation results