train_boolq_456_1765342117

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2676
  • Num Input Tokens Seen: 37905784

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 456
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2652 2.0 3772 0.3582 3787392
0.2954 4.0 7544 0.3361 7574416
0.2594 6.0 11316 0.3424 11359560
0.3434 8.0 15088 0.3840 15147312
0.1768 10.0 18860 0.4522 18943384
0.0876 12.0 22632 0.6568 22733808
0.0422 14.0 26404 0.9193 26523680
0.0309 16.0 30176 1.1920 30314480
0.0002 18.0 33948 1.2599 34105096
0.0002 20.0 37720 1.2676 37905784

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
55
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_456_1765342117

Adapter
(2094)
this model

Evaluation results