train_boolq_456_1765342117
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:
- Loss: 1.2676
- Num Input Tokens Seen: 37905784
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 456
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|---|---|---|---|---|
| 0.2652 | 2.0 | 3772 | 0.3582 | 3787392 |
| 0.2954 | 4.0 | 7544 | 0.3361 | 7574416 |
| 0.2594 | 6.0 | 11316 | 0.3424 | 11359560 |
| 0.3434 | 8.0 | 15088 | 0.3840 | 15147312 |
| 0.1768 | 10.0 | 18860 | 0.4522 | 18943384 |
| 0.0876 | 12.0 | 22632 | 0.6568 | 22733808 |
| 0.0422 | 14.0 | 26404 | 0.9193 | 26523680 |
| 0.0309 | 16.0 | 30176 | 1.1920 | 30314480 |
| 0.0002 | 18.0 | 33948 | 1.2599 | 34105096 |
| 0.0002 | 20.0 | 37720 | 1.2676 | 37905784 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 55
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_boolq_456_1765342117
Base model
meta-llama/Meta-Llama-3-8B-Instruct