train_boolq_456_1765357262

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3382
  • Num Input Tokens Seen: 42758400

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 456
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.3414 1.0 2121 0.3479 2134176
0.5563 2.0 4242 0.3527 4262848
0.3714 3.0 6363 0.3680 6393376
0.3401 4.0 8484 0.3407 8527168
0.3356 5.0 10605 0.3411 10663616
0.3954 6.0 12726 0.3401 12804064
0.3437 7.0 14847 0.3379 14945088
0.3653 8.0 16968 0.3673 17092000
0.2817 9.0 19089 0.3553 19221568
0.3382 10.0 21210 0.3547 21363392
0.3377 11.0 23331 0.3380 23510432
0.3508 12.0 25452 0.3559 25647872
0.3379 13.0 27573 0.3386 27792544
0.3317 14.0 29694 0.3395 29926112
0.3598 15.0 31815 0.3384 32059584
0.3823 16.0 33936 0.3384 34199392
0.3576 17.0 36057 0.3374 36344896
0.3536 18.0 38178 0.3390 38482112
0.348 19.0 40299 0.3383 40624896
0.2996 20.0 42420 0.3378 42758400

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
90
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_456_1765357262

Adapter
(2098)
this model

Evaluation results