train_boolq_456_1765365932

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1894
  • Num Input Tokens Seen: 42758400

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 456
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2547 1.0 2121 0.2117 2134176
0.0063 2.0 4242 0.1894 4262848
0.2342 3.0 6363 0.1965 6393376
0.1502 4.0 8484 0.2232 8527168
0.0005 5.0 10605 0.3246 10663616
0.0001 6.0 12726 0.4844 12804064
0.0006 7.0 14847 0.4083 14945088
0.0005 8.0 16968 0.4946 17092000
0.0001 9.0 19089 0.4690 19221568
0.0589 10.0 21210 0.4041 21363392
0.0001 11.0 23331 0.5136 23510432
0.0 12.0 25452 0.5234 25647872
0.0 13.0 27573 0.5372 27792544
0.0 14.0 29694 0.6022 29926112
0.0 15.0 31815 0.7163 32059584
0.0 16.0 33936 0.7540 34199392
0.0 17.0 36057 0.7693 36344896
0.0 18.0 38178 0.7853 38482112
0.0 19.0 40299 0.7943 40624896
0.0 20.0 42420 0.7922 42758400

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
103
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_456_1765365932

Adapter
(2103)
this model

Evaluation results