train_boolq_456_1765377404

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1943
  • Num Input Tokens Seen: 42758400

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 456
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.0993 1.0 2121 0.2367 2134176
0.0802 2.0 4242 0.2049 4262848
0.3084 3.0 6363 0.1943 6393376
0.2871 4.0 8484 0.2014 8527168
0.0976 5.0 10605 0.2174 10663616
0.2931 6.0 12726 0.2334 12804064
0.1306 7.0 14847 0.2484 14945088
0.1506 8.0 16968 0.2774 17092000
0.003 9.0 19089 0.2881 19221568
0.0021 10.0 21210 0.3368 21363392
0.1047 11.0 23331 0.3346 23510432
0.0028 12.0 25452 0.3918 25647872
0.0011 13.0 27573 0.4164 27792544
0.0006 14.0 29694 0.4501 29926112
0.0736 15.0 31815 0.4886 32059584
0.0016 16.0 33936 0.5037 34199392
0.0302 17.0 36057 0.5235 36344896
0.0003 18.0 38178 0.5321 38482112
0.0001 19.0 40299 0.5280 40624896
0.0266 20.0 42420 0.5283 42758400

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
97
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_456_1765377404

Adapter
(2098)
this model

Evaluation results