train_boolq_456_1765386945

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1715
  • Num Input Tokens Seen: 42758400

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 456
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.0939 1.0 2121 0.2470 2134176
0.0918 2.0 4242 0.2088 4262848
0.2719 3.0 6363 0.1910 6393376
0.2535 4.0 8484 0.1835 8527168
0.1725 5.0 10605 0.1774 10663616
0.2312 6.0 12726 0.1743 12804064
0.1922 7.0 14847 0.1715 14945088
0.2345 8.0 16968 0.1721 17092000
0.1187 9.0 19089 0.1729 19221568
0.1793 10.0 21210 0.1745 21363392
0.174 11.0 23331 0.1720 23510432
0.0468 12.0 25452 0.1736 25647872
0.0497 13.0 27573 0.1744 27792544
0.0608 14.0 29694 0.1732 29926112
0.1619 15.0 31815 0.1738 32059584
0.1059 16.0 33936 0.1752 34199392
0.116 17.0 36057 0.1756 36344896
0.0197 18.0 38178 0.1773 38482112
0.0114 19.0 40299 0.1754 40624896
0.1493 20.0 42420 0.1750 42758400

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
104
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_boolq_456_1765386945

Adapter
(2098)
this model

Evaluation results