train_codealpacapy_1754507519

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the codealpacapy dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5095
  • Num Input Tokens Seen: 12472912

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
1.2063 0.5 954 0.8954 616992
0.6751 1.0 1908 0.6183 1248304
0.6012 1.5 2862 0.5800 1877040
0.5251 2.0 3816 0.5593 2497016
0.6714 2.5 4770 0.5456 3129368
0.479 3.0 5724 0.5357 3742552
0.5164 3.5 6678 0.5292 4361944
0.466 4.0 7632 0.5243 4985200
0.5503 4.5 8586 0.5204 5611760
0.5104 5.0 9540 0.5176 6233920
0.4934 5.5 10494 0.5154 6849184
0.5247 6.0 11448 0.5138 7478504
0.3868 6.5 12402 0.5123 8083560
0.4867 7.0 13356 0.5115 8722744
0.4567 7.5 14310 0.5105 9345976
0.8155 8.0 15264 0.5102 9977520
0.278 8.5 16218 0.5096 10604656
0.5267 9.0 17172 0.5098 11225416
0.4248 9.5 18126 0.5096 11845704
0.6968 10.0 19080 0.5095 12472912

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_codealpacapy_1754507519

Adapter
(2099)
this model

Evaluation results