train_codealpacapy_1756735779

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the codealpacapy dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9111
  • Num Input Tokens Seen: 10232192

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.4264 0.5001 1908 0.5402 508608
0.5745 1.0003 3816 0.5149 1023840
0.4672 1.5004 5724 0.5128 1534400
0.4912 2.0005 7632 0.4941 2047464
0.687 2.5007 9540 0.5038 2563624
0.4155 3.0008 11448 0.4962 3068424
0.38 3.5009 13356 0.5108 3579432
0.4852 4.0010 15264 0.5102 4090736
0.3171 4.5012 17172 0.5321 4604416
0.2889 5.0013 19080 0.5387 5114800
0.4 5.5014 20988 0.5884 5619904
0.2025 6.0016 22896 0.5995 6137320
0.2342 6.5017 24804 0.6671 6637864
0.1245 7.0018 26712 0.6658 7159688
0.2067 7.5020 28620 0.7494 7672088
0.2948 8.0021 30528 0.7577 8185712
0.0856 8.5022 32436 0.8556 8700416
0.0914 9.0024 34344 0.8543 9210648
0.1008 9.5025 36252 0.9084 9716920

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_codealpacapy_1756735779

Adapter
(2099)
this model

Evaluation results