train_gsm8k_1754652178

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the gsm8k dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5647
  • Num Input Tokens Seen: 17277648

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
6.8827 0.5 841 6.9697 865376
5.83 1.0 1682 5.7327 1731768
5.0396 1.5 2523 5.1637 2596664
4.7207 2.0 3364 4.8774 3464008
4.7156 2.5 4205 4.7102 4329160
4.4299 3.0 5046 4.5935 5197240
4.3705 3.5 5887 4.4639 6061624
4.4118 4.0 6728 4.3314 6920632
4.162 4.5 7569 4.2099 7784408
3.9714 5.0 8410 4.0998 8646936
4.0372 5.5 9251 3.9920 9505560
3.7467 6.0 10092 3.8812 10374192
3.8546 6.5 10933 3.7810 11237008
3.9448 7.0 11774 3.7024 12101200
3.5379 7.5 12615 3.6452 12959728
3.5817 8.0 13456 3.6064 13828800
3.7709 8.5 14297 3.5823 14696832
3.6574 9.0 15138 3.5699 15552184
3.4324 9.5 15979 3.5658 16413528
3.7105 10.0 16820 3.5647 17277648

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_gsm8k_1754652178

Adapter
(2098)
this model

Evaluation results