train_multirc_123_1765085968

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the multirc dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1493
  • Num Input Tokens Seen: 264547520

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2291 1.0 6130 0.1683 13255424
0.1362 2.0 12260 0.1537 26471216
0.1127 3.0 18390 0.1624 39694112
0.006 4.0 24520 0.1493 52929744
0.1242 5.0 30650 0.1528 66152480
0.0787 6.0 36780 0.1757 79389648
0.0334 7.0 42910 0.1998 92621824
0.0037 8.0 49040 0.1987 105830544
0.0024 9.0 55170 0.2279 119047920
0.0016 10.0 61300 0.2657 132272272
0.0802 11.0 67430 0.2837 145487264
0.1503 12.0 73560 0.3020 158737232
0.0007 13.0 79690 0.3717 171979232
0.0002 14.0 85820 0.3937 185199728
0.0005 15.0 91950 0.4193 198426688
0.0002 16.0 98080 0.4258 211640976
0.0001 17.0 104210 0.4539 224870720
0.0005 18.0 110340 0.4676 238102672
0.0001 19.0 116470 0.4672 251320768
0.0001 20.0 122600 0.4679 264547520

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
120
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_multirc_123_1765085968

Adapter
(2094)
this model

Evaluation results