train_multirc_1745950266
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the multirc dataset. It achieves the following results on the evaluation set:
- Loss: 0.9281
- Num Input Tokens Seen: 75778784
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 40000
Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|---|---|---|---|---|
| 0.8429 | 0.0326 | 200 | 1.0602 | 378944 |
| 0.8908 | 0.0653 | 400 | 0.9846 | 758192 |
| 1.0758 | 0.0979 | 600 | 0.9602 | 1141408 |
| 1.1887 | 0.1305 | 800 | 0.9494 | 1518336 |
| 0.4649 | 0.1631 | 1000 | 0.9558 | 1901264 |
| 1.1186 | 0.1958 | 1200 | 0.9523 | 2279552 |
| 1.1403 | 0.2284 | 1400 | 0.9474 | 2668256 |
| 0.6437 | 0.2610 | 1600 | 0.9507 | 3047328 |
| 0.6645 | 0.2937 | 1800 | 0.9448 | 3429984 |
| 0.951 | 0.3263 | 2000 | 0.9496 | 3814576 |
| 0.9459 | 0.3589 | 2200 | 0.9451 | 4190352 |
| 0.6611 | 0.3915 | 2400 | 0.9471 | 4567440 |
| 1.9537 | 0.4242 | 2600 | 0.9527 | 4944384 |
| 0.9478 | 0.4568 | 2800 | 0.9585 | 5325216 |
| 0.9183 | 0.4894 | 3000 | 0.9481 | 5698896 |
| 1.5122 | 0.5221 | 3200 | 0.9483 | 6074432 |
| 0.51 | 0.5547 | 3400 | 0.9481 | 6454208 |
| 0.4708 | 0.5873 | 3600 | 0.9469 | 6831056 |
| 0.6829 | 0.6200 | 3800 | 0.9577 | 7209536 |
| 0.9297 | 0.6526 | 4000 | 0.9484 | 7593024 |
| 0.8081 | 0.6852 | 4200 | 0.9388 | 7977072 |
| 0.9532 | 0.7178 | 4400 | 0.9327 | 8353296 |
| 0.7015 | 0.7505 | 4600 | 0.9427 | 8733232 |
| 1.0696 | 0.7831 | 4800 | 0.9324 | 9113632 |
| 0.6209 | 0.8157 | 5000 | 0.9560 | 9487952 |
| 0.8961 | 0.8484 | 5200 | 0.9395 | 9861104 |
| 1.0547 | 0.8810 | 5400 | 0.9412 | 10239088 |
| 1.2457 | 0.9136 | 5600 | 0.9445 | 10619840 |
| 1.3315 | 0.9462 | 5800 | 0.9514 | 10994720 |
| 1.0866 | 0.9789 | 6000 | 0.9464 | 11376976 |
| 0.9159 | 1.0114 | 6200 | 0.9383 | 11758656 |
| 1.2179 | 1.0440 | 6400 | 0.9451 | 12144016 |
| 0.8416 | 1.0767 | 6600 | 0.9362 | 12531776 |
| 1.1413 | 1.1093 | 6800 | 0.9466 | 12905136 |
| 0.9718 | 1.1419 | 7000 | 0.9424 | 13278096 |
| 1.295 | 1.1746 | 7200 | 0.9421 | 13651520 |
| 0.6159 | 1.2072 | 7400 | 0.9364 | 14034784 |
| 1.0405 | 1.2398 | 7600 | 0.9419 | 14415120 |
| 0.7077 | 1.2725 | 7800 | 0.9339 | 14794784 |
| 0.6286 | 1.3051 | 8000 | 0.9354 | 15176240 |
| 1.015 | 1.3377 | 8200 | 0.9345 | 15548080 |
| 0.5649 | 1.3703 | 8400 | 0.9363 | 15926832 |
| 1.288 | 1.4030 | 8600 | 0.9464 | 16305344 |
| 0.6352 | 1.4356 | 8800 | 0.9344 | 16686528 |
| 1.0296 | 1.4682 | 9000 | 0.9397 | 17073648 |
| 0.6318 | 1.5009 | 9200 | 0.9450 | 17457952 |
| 1.2265 | 1.5335 | 9400 | 0.9558 | 17831104 |
| 0.752 | 1.5661 | 9600 | 0.9367 | 18215168 |
| 0.6444 | 1.5987 | 9800 | 0.9360 | 18592816 |
| 1.2319 | 1.6314 | 10000 | 0.9408 | 18972864 |
| 0.6575 | 1.6640 | 10200 | 0.9439 | 19350160 |
| 1.3234 | 1.6966 | 10400 | 0.9475 | 19735024 |
| 1.2022 | 1.7293 | 10600 | 0.9402 | 20108768 |
| 1.3244 | 1.7619 | 10800 | 0.9433 | 20489424 |
| 1.2097 | 1.7945 | 11000 | 0.9463 | 20870832 |
| 0.9912 | 1.8271 | 11200 | 0.9415 | 21240960 |
| 1.1266 | 1.8598 | 11400 | 0.9293 | 21615744 |
| 0.9204 | 1.8924 | 11600 | 0.9569 | 21991984 |
| 0.8482 | 1.9250 | 11800 | 0.9444 | 22366624 |
| 1.301 | 1.9577 | 12000 | 0.9329 | 22746000 |
| 1.1116 | 1.9903 | 12200 | 0.9432 | 23122688 |
| 0.7897 | 2.0228 | 12400 | 0.9398 | 23494112 |
| 1.1651 | 2.0555 | 12600 | 0.9495 | 23876160 |
| 1.0717 | 2.0881 | 12800 | 0.9446 | 24261904 |
| 0.8885 | 2.1207 | 13000 | 0.9414 | 24643776 |
| 0.6751 | 2.1534 | 13200 | 0.9347 | 25020496 |
| 0.9654 | 2.1860 | 13400 | 0.9370 | 25391072 |
| 0.7338 | 2.2186 | 13600 | 0.9449 | 25762416 |
| 1.0438 | 2.2512 | 13800 | 0.9505 | 26139456 |
| 0.7634 | 2.2839 | 14000 | 0.9568 | 26511344 |
| 1.0118 | 2.3165 | 14200 | 0.9423 | 26891616 |
| 1.0028 | 2.3491 | 14400 | 0.9470 | 27274960 |
| 0.9065 | 2.3818 | 14600 | 0.9416 | 27652224 |
| 1.2445 | 2.4144 | 14800 | 0.9423 | 28033168 |
| 1.0826 | 2.4470 | 15000 | 0.9462 | 28414784 |
| 1.1692 | 2.4796 | 15200 | 0.9433 | 28787168 |
| 0.9041 | 2.5123 | 15400 | 0.9309 | 29164512 |
| 0.666 | 2.5449 | 15600 | 0.9459 | 29545056 |
| 0.6744 | 2.5775 | 15800 | 0.9435 | 29922176 |
| 0.9566 | 2.6102 | 16000 | 0.9458 | 30304336 |
| 0.9229 | 2.6428 | 16200 | 0.9431 | 30688608 |
| 0.981 | 2.6754 | 16400 | 0.9449 | 31067744 |
| 0.9639 | 2.7081 | 16600 | 0.9513 | 31455328 |
| 0.688 | 2.7407 | 16800 | 0.9445 | 31833136 |
| 1.2851 | 2.7733 | 17000 | 0.9450 | 32213296 |
| 0.9594 | 2.8059 | 17200 | 0.9332 | 32588128 |
| 1.596 | 2.8386 | 17400 | 0.9458 | 32971552 |
| 1.2732 | 2.8712 | 17600 | 0.9381 | 33356064 |
| 0.8654 | 2.9038 | 17800 | 0.9527 | 33739984 |
| 1.1866 | 2.9365 | 18000 | 0.9534 | 34121824 |
| 1.0331 | 2.9691 | 18200 | 0.9447 | 34498368 |
| 0.9694 | 3.0016 | 18400 | 0.9325 | 34866272 |
| 0.8546 | 3.0343 | 18600 | 0.9470 | 35258768 |
| 1.1217 | 3.0669 | 18800 | 0.9438 | 35644416 |
| 1.0455 | 3.0995 | 19000 | 0.9385 | 36017808 |
| 0.5291 | 3.1321 | 19200 | 0.9523 | 36393536 |
| 1.4627 | 3.1648 | 19400 | 0.9393 | 36770432 |
| 0.7338 | 3.1974 | 19600 | 0.9378 | 37152448 |
| 0.9475 | 3.2300 | 19800 | 0.9320 | 37532496 |
| 1.041 | 3.2627 | 20000 | 0.9395 | 37910480 |
| 0.8279 | 3.2953 | 20200 | 0.9451 | 38286080 |
| 1.0918 | 3.3279 | 20400 | 0.9556 | 38664512 |
| 1.0382 | 3.3606 | 20600 | 0.9494 | 39053472 |
| 1.3256 | 3.3932 | 20800 | 0.9338 | 39432032 |
| 1.2405 | 3.4258 | 21000 | 0.9404 | 39812704 |
| 0.7672 | 3.4584 | 21200 | 0.9427 | 40191088 |
| 0.973 | 3.4911 | 21400 | 0.9413 | 40567216 |
| 0.8321 | 3.5237 | 21600 | 0.9382 | 40947696 |
| 0.9788 | 3.5563 | 21800 | 0.9526 | 41330624 |
| 1.235 | 3.5890 | 22000 | 0.9441 | 41708800 |
| 0.4985 | 3.6216 | 22200 | 0.9452 | 42087824 |
| 1.1512 | 3.6542 | 22400 | 0.9353 | 42461936 |
| 0.7916 | 3.6868 | 22600 | 0.9488 | 42843696 |
| 0.8338 | 3.7195 | 22800 | 0.9428 | 43221120 |
| 1.1238 | 3.7521 | 23000 | 0.9366 | 43597776 |
| 0.6936 | 3.7847 | 23200 | 0.9418 | 43979312 |
| 0.6829 | 3.8174 | 23400 | 0.9284 | 44354480 |
| 0.9888 | 3.8500 | 23600 | 0.9381 | 44727696 |
| 1.0987 | 3.8826 | 23800 | 0.9352 | 45108608 |
| 1.1806 | 3.9152 | 24000 | 0.9479 | 45482928 |
| 0.6657 | 3.9479 | 24200 | 0.9359 | 45861584 |
| 1.0493 | 3.9805 | 24400 | 0.9422 | 46243072 |
| 1.0646 | 4.0131 | 24600 | 0.9422 | 46619680 |
| 0.9162 | 4.0457 | 24800 | 0.9401 | 47007360 |
| 1.3567 | 4.0783 | 25000 | 0.9361 | 47391600 |
| 0.7256 | 4.1109 | 25200 | 0.9404 | 47768320 |
| 1.2478 | 4.1436 | 25400 | 0.9429 | 48143424 |
| 1.087 | 4.1762 | 25600 | 0.9353 | 48524368 |
| 0.8097 | 4.2088 | 25800 | 0.9346 | 48899856 |
| 0.6918 | 4.2415 | 26000 | 0.9357 | 49280208 |
| 0.9613 | 4.2741 | 26200 | 0.9350 | 49658080 |
| 1.1259 | 4.3067 | 26400 | 0.9395 | 50034848 |
| 0.7122 | 4.3393 | 26600 | 0.9460 | 50413376 |
| 1.0615 | 4.3720 | 26800 | 0.9428 | 50793248 |
| 1.1671 | 4.4046 | 27000 | 0.9421 | 51170976 |
| 1.1558 | 4.4372 | 27200 | 0.9426 | 51559504 |
| 0.6195 | 4.4699 | 27400 | 0.9444 | 51928704 |
| 0.731 | 4.5025 | 27600 | 0.9370 | 52297776 |
| 0.7066 | 4.5351 | 27800 | 0.9397 | 52669472 |
| 0.6422 | 4.5677 | 28000 | 0.9472 | 53045856 |
| 1.0387 | 4.6004 | 28200 | 0.9486 | 53429232 |
| 1.1628 | 4.6330 | 28400 | 0.9281 | 53810560 |
| 1.1705 | 4.6656 | 28600 | 0.9332 | 54191536 |
| 0.9436 | 4.6983 | 28800 | 0.9376 | 54572176 |
| 0.867 | 4.7309 | 29000 | 0.9443 | 54952896 |
| 1.0229 | 4.7635 | 29200 | 0.9492 | 55327776 |
| 0.445 | 4.7961 | 29400 | 0.9445 | 55708896 |
| 0.7952 | 4.8288 | 29600 | 0.9441 | 56085712 |
| 0.6884 | 4.8614 | 29800 | 0.9549 | 56467376 |
| 0.691 | 4.8940 | 30000 | 0.9420 | 56841328 |
| 0.8571 | 4.9267 | 30200 | 0.9397 | 57227184 |
| 0.9701 | 4.9593 | 30400 | 0.9355 | 57605632 |
| 0.8541 | 4.9919 | 30600 | 0.9416 | 57987472 |
| 0.4922 | 5.0245 | 30800 | 0.9544 | 58367056 |
| 0.9541 | 5.0571 | 31000 | 0.9414 | 58746720 |
| 0.5754 | 5.0897 | 31200 | 0.9393 | 59124272 |
| 1.1303 | 5.1224 | 31400 | 0.9290 | 59504688 |
| 0.7824 | 5.1550 | 31600 | 0.9336 | 59875840 |
| 0.859 | 5.1876 | 31800 | 0.9425 | 60247360 |
| 0.8638 | 5.2202 | 32000 | 0.9414 | 60622464 |
| 0.8986 | 5.2529 | 32200 | 0.9392 | 61006768 |
| 0.7302 | 5.2855 | 32400 | 0.9455 | 61386992 |
| 1.3051 | 5.3181 | 32600 | 0.9346 | 61770000 |
| 1.1335 | 5.3508 | 32800 | 0.9374 | 62154640 |
| 0.9185 | 5.3834 | 33000 | 0.9444 | 62541664 |
| 0.5254 | 5.4160 | 33200 | 0.9312 | 62912976 |
| 0.9978 | 5.4486 | 33400 | 0.9312 | 63289520 |
| 1.6788 | 5.4813 | 33600 | 0.9449 | 63668416 |
| 0.807 | 5.5139 | 33800 | 0.9414 | 64043792 |
| 0.6642 | 5.5465 | 34000 | 0.9414 | 64433840 |
| 1.287 | 5.5792 | 34200 | 0.9414 | 64808624 |
| 0.8623 | 5.6118 | 34400 | 0.9414 | 65182704 |
| 0.7179 | 5.6444 | 34600 | 0.9414 | 65562192 |
| 1.1127 | 5.6771 | 34800 | 0.9414 | 65940816 |
| 0.9003 | 5.7097 | 35000 | 0.9414 | 66326768 |
| 0.6414 | 5.7423 | 35200 | 0.9414 | 66705744 |
| 1.3465 | 5.7749 | 35400 | 0.9414 | 67084928 |
| 0.68 | 5.8076 | 35600 | 0.9414 | 67462064 |
| 0.8508 | 5.8402 | 35800 | 0.9414 | 67846112 |
| 0.8323 | 5.8728 | 36000 | 0.9414 | 68221552 |
| 0.9347 | 5.9055 | 36200 | 0.9414 | 68606416 |
| 0.9616 | 5.9381 | 36400 | 0.9414 | 68980176 |
| 0.7618 | 5.9707 | 36600 | 0.9414 | 69349984 |
| 1.3682 | 6.0033 | 36800 | 0.9414 | 69729984 |
| 0.6724 | 6.0359 | 37000 | 0.9414 | 70107936 |
| 1.0439 | 6.0685 | 37200 | 0.9414 | 70487856 |
| 0.5013 | 6.1012 | 37400 | 0.9414 | 70865792 |
| 0.6052 | 6.1338 | 37600 | 0.9414 | 71244784 |
| 1.1087 | 6.1664 | 37800 | 0.9414 | 71630704 |
| 0.5706 | 6.1990 | 38000 | 0.9414 | 72002688 |
| 1.8746 | 6.2317 | 38200 | 0.9414 | 72385776 |
| 0.9978 | 6.2643 | 38400 | 0.9414 | 72773152 |
| 0.8948 | 6.2969 | 38600 | 0.9414 | 73149584 |
| 1.2147 | 6.3296 | 38800 | 0.9414 | 73519536 |
| 1.0777 | 6.3622 | 39000 | 0.9414 | 73902896 |
| 1.1562 | 6.3948 | 39200 | 0.9414 | 74278960 |
| 1.6357 | 6.4274 | 39400 | 0.9414 | 74655728 |
| 0.9998 | 6.4601 | 39600 | 0.9414 | 75025808 |
| 0.8366 | 6.4927 | 39800 | 0.9414 | 75402576 |
| 0.8005 | 6.5253 | 40000 | 0.9414 | 75778784 |
Framework versions
- PEFT 0.15.2.dev0
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_multirc_1745950266
Base model
meta-llama/Meta-Llama-3-8B-Instruct