train_multirc_1745950266

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the multirc dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9281
  • Num Input Tokens Seen: 75778784

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 123
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • training_steps: 40000

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.8429 0.0326 200 1.0602 378944
0.8908 0.0653 400 0.9846 758192
1.0758 0.0979 600 0.9602 1141408
1.1887 0.1305 800 0.9494 1518336
0.4649 0.1631 1000 0.9558 1901264
1.1186 0.1958 1200 0.9523 2279552
1.1403 0.2284 1400 0.9474 2668256
0.6437 0.2610 1600 0.9507 3047328
0.6645 0.2937 1800 0.9448 3429984
0.951 0.3263 2000 0.9496 3814576
0.9459 0.3589 2200 0.9451 4190352
0.6611 0.3915 2400 0.9471 4567440
1.9537 0.4242 2600 0.9527 4944384
0.9478 0.4568 2800 0.9585 5325216
0.9183 0.4894 3000 0.9481 5698896
1.5122 0.5221 3200 0.9483 6074432
0.51 0.5547 3400 0.9481 6454208
0.4708 0.5873 3600 0.9469 6831056
0.6829 0.6200 3800 0.9577 7209536
0.9297 0.6526 4000 0.9484 7593024
0.8081 0.6852 4200 0.9388 7977072
0.9532 0.7178 4400 0.9327 8353296
0.7015 0.7505 4600 0.9427 8733232
1.0696 0.7831 4800 0.9324 9113632
0.6209 0.8157 5000 0.9560 9487952
0.8961 0.8484 5200 0.9395 9861104
1.0547 0.8810 5400 0.9412 10239088
1.2457 0.9136 5600 0.9445 10619840
1.3315 0.9462 5800 0.9514 10994720
1.0866 0.9789 6000 0.9464 11376976
0.9159 1.0114 6200 0.9383 11758656
1.2179 1.0440 6400 0.9451 12144016
0.8416 1.0767 6600 0.9362 12531776
1.1413 1.1093 6800 0.9466 12905136
0.9718 1.1419 7000 0.9424 13278096
1.295 1.1746 7200 0.9421 13651520
0.6159 1.2072 7400 0.9364 14034784
1.0405 1.2398 7600 0.9419 14415120
0.7077 1.2725 7800 0.9339 14794784
0.6286 1.3051 8000 0.9354 15176240
1.015 1.3377 8200 0.9345 15548080
0.5649 1.3703 8400 0.9363 15926832
1.288 1.4030 8600 0.9464 16305344
0.6352 1.4356 8800 0.9344 16686528
1.0296 1.4682 9000 0.9397 17073648
0.6318 1.5009 9200 0.9450 17457952
1.2265 1.5335 9400 0.9558 17831104
0.752 1.5661 9600 0.9367 18215168
0.6444 1.5987 9800 0.9360 18592816
1.2319 1.6314 10000 0.9408 18972864
0.6575 1.6640 10200 0.9439 19350160
1.3234 1.6966 10400 0.9475 19735024
1.2022 1.7293 10600 0.9402 20108768
1.3244 1.7619 10800 0.9433 20489424
1.2097 1.7945 11000 0.9463 20870832
0.9912 1.8271 11200 0.9415 21240960
1.1266 1.8598 11400 0.9293 21615744
0.9204 1.8924 11600 0.9569 21991984
0.8482 1.9250 11800 0.9444 22366624
1.301 1.9577 12000 0.9329 22746000
1.1116 1.9903 12200 0.9432 23122688
0.7897 2.0228 12400 0.9398 23494112
1.1651 2.0555 12600 0.9495 23876160
1.0717 2.0881 12800 0.9446 24261904
0.8885 2.1207 13000 0.9414 24643776
0.6751 2.1534 13200 0.9347 25020496
0.9654 2.1860 13400 0.9370 25391072
0.7338 2.2186 13600 0.9449 25762416
1.0438 2.2512 13800 0.9505 26139456
0.7634 2.2839 14000 0.9568 26511344
1.0118 2.3165 14200 0.9423 26891616
1.0028 2.3491 14400 0.9470 27274960
0.9065 2.3818 14600 0.9416 27652224
1.2445 2.4144 14800 0.9423 28033168
1.0826 2.4470 15000 0.9462 28414784
1.1692 2.4796 15200 0.9433 28787168
0.9041 2.5123 15400 0.9309 29164512
0.666 2.5449 15600 0.9459 29545056
0.6744 2.5775 15800 0.9435 29922176
0.9566 2.6102 16000 0.9458 30304336
0.9229 2.6428 16200 0.9431 30688608
0.981 2.6754 16400 0.9449 31067744
0.9639 2.7081 16600 0.9513 31455328
0.688 2.7407 16800 0.9445 31833136
1.2851 2.7733 17000 0.9450 32213296
0.9594 2.8059 17200 0.9332 32588128
1.596 2.8386 17400 0.9458 32971552
1.2732 2.8712 17600 0.9381 33356064
0.8654 2.9038 17800 0.9527 33739984
1.1866 2.9365 18000 0.9534 34121824
1.0331 2.9691 18200 0.9447 34498368
0.9694 3.0016 18400 0.9325 34866272
0.8546 3.0343 18600 0.9470 35258768
1.1217 3.0669 18800 0.9438 35644416
1.0455 3.0995 19000 0.9385 36017808
0.5291 3.1321 19200 0.9523 36393536
1.4627 3.1648 19400 0.9393 36770432
0.7338 3.1974 19600 0.9378 37152448
0.9475 3.2300 19800 0.9320 37532496
1.041 3.2627 20000 0.9395 37910480
0.8279 3.2953 20200 0.9451 38286080
1.0918 3.3279 20400 0.9556 38664512
1.0382 3.3606 20600 0.9494 39053472
1.3256 3.3932 20800 0.9338 39432032
1.2405 3.4258 21000 0.9404 39812704
0.7672 3.4584 21200 0.9427 40191088
0.973 3.4911 21400 0.9413 40567216
0.8321 3.5237 21600 0.9382 40947696
0.9788 3.5563 21800 0.9526 41330624
1.235 3.5890 22000 0.9441 41708800
0.4985 3.6216 22200 0.9452 42087824
1.1512 3.6542 22400 0.9353 42461936
0.7916 3.6868 22600 0.9488 42843696
0.8338 3.7195 22800 0.9428 43221120
1.1238 3.7521 23000 0.9366 43597776
0.6936 3.7847 23200 0.9418 43979312
0.6829 3.8174 23400 0.9284 44354480
0.9888 3.8500 23600 0.9381 44727696
1.0987 3.8826 23800 0.9352 45108608
1.1806 3.9152 24000 0.9479 45482928
0.6657 3.9479 24200 0.9359 45861584
1.0493 3.9805 24400 0.9422 46243072
1.0646 4.0131 24600 0.9422 46619680
0.9162 4.0457 24800 0.9401 47007360
1.3567 4.0783 25000 0.9361 47391600
0.7256 4.1109 25200 0.9404 47768320
1.2478 4.1436 25400 0.9429 48143424
1.087 4.1762 25600 0.9353 48524368
0.8097 4.2088 25800 0.9346 48899856
0.6918 4.2415 26000 0.9357 49280208
0.9613 4.2741 26200 0.9350 49658080
1.1259 4.3067 26400 0.9395 50034848
0.7122 4.3393 26600 0.9460 50413376
1.0615 4.3720 26800 0.9428 50793248
1.1671 4.4046 27000 0.9421 51170976
1.1558 4.4372 27200 0.9426 51559504
0.6195 4.4699 27400 0.9444 51928704
0.731 4.5025 27600 0.9370 52297776
0.7066 4.5351 27800 0.9397 52669472
0.6422 4.5677 28000 0.9472 53045856
1.0387 4.6004 28200 0.9486 53429232
1.1628 4.6330 28400 0.9281 53810560
1.1705 4.6656 28600 0.9332 54191536
0.9436 4.6983 28800 0.9376 54572176
0.867 4.7309 29000 0.9443 54952896
1.0229 4.7635 29200 0.9492 55327776
0.445 4.7961 29400 0.9445 55708896
0.7952 4.8288 29600 0.9441 56085712
0.6884 4.8614 29800 0.9549 56467376
0.691 4.8940 30000 0.9420 56841328
0.8571 4.9267 30200 0.9397 57227184
0.9701 4.9593 30400 0.9355 57605632
0.8541 4.9919 30600 0.9416 57987472
0.4922 5.0245 30800 0.9544 58367056
0.9541 5.0571 31000 0.9414 58746720
0.5754 5.0897 31200 0.9393 59124272
1.1303 5.1224 31400 0.9290 59504688
0.7824 5.1550 31600 0.9336 59875840
0.859 5.1876 31800 0.9425 60247360
0.8638 5.2202 32000 0.9414 60622464
0.8986 5.2529 32200 0.9392 61006768
0.7302 5.2855 32400 0.9455 61386992
1.3051 5.3181 32600 0.9346 61770000
1.1335 5.3508 32800 0.9374 62154640
0.9185 5.3834 33000 0.9444 62541664
0.5254 5.4160 33200 0.9312 62912976
0.9978 5.4486 33400 0.9312 63289520
1.6788 5.4813 33600 0.9449 63668416
0.807 5.5139 33800 0.9414 64043792
0.6642 5.5465 34000 0.9414 64433840
1.287 5.5792 34200 0.9414 64808624
0.8623 5.6118 34400 0.9414 65182704
0.7179 5.6444 34600 0.9414 65562192
1.1127 5.6771 34800 0.9414 65940816
0.9003 5.7097 35000 0.9414 66326768
0.6414 5.7423 35200 0.9414 66705744
1.3465 5.7749 35400 0.9414 67084928
0.68 5.8076 35600 0.9414 67462064
0.8508 5.8402 35800 0.9414 67846112
0.8323 5.8728 36000 0.9414 68221552
0.9347 5.9055 36200 0.9414 68606416
0.9616 5.9381 36400 0.9414 68980176
0.7618 5.9707 36600 0.9414 69349984
1.3682 6.0033 36800 0.9414 69729984
0.6724 6.0359 37000 0.9414 70107936
1.0439 6.0685 37200 0.9414 70487856
0.5013 6.1012 37400 0.9414 70865792
0.6052 6.1338 37600 0.9414 71244784
1.1087 6.1664 37800 0.9414 71630704
0.5706 6.1990 38000 0.9414 72002688
1.8746 6.2317 38200 0.9414 72385776
0.9978 6.2643 38400 0.9414 72773152
0.8948 6.2969 38600 0.9414 73149584
1.2147 6.3296 38800 0.9414 73519536
1.0777 6.3622 39000 0.9414 73902896
1.1562 6.3948 39200 0.9414 74278960
1.6357 6.4274 39400 0.9414 74655728
0.9998 6.4601 39600 0.9414 75025808
0.8366 6.4927 39800 0.9414 75402576
0.8005 6.5253 40000 0.9414 75778784

Framework versions

  • PEFT 0.15.2.dev0
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_multirc_1745950266

Adapter
(2099)
this model

Evaluation results