train_piqa_123_1762687058
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the piqa dataset. It achieves the following results on the evaluation set:
- Loss: 0.1131
- Num Input Tokens Seen: 44193480
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|---|---|---|---|---|
| 0.0947 | 1.0 | 3626 | 0.1277 | 2216600 |
| 0.0548 | 2.0 | 7252 | 0.1158 | 4419000 |
| 0.11 | 3.0 | 10878 | 0.1131 | 6628280 |
| 0.0944 | 4.0 | 14504 | 0.1137 | 8844408 |
| 0.0336 | 5.0 | 18130 | 0.1201 | 11048200 |
| 0.0045 | 6.0 | 21756 | 0.1497 | 13257624 |
| 0.1283 | 7.0 | 25382 | 0.1657 | 15468632 |
| 0.0497 | 8.0 | 29008 | 0.2049 | 17678024 |
| 0.0006 | 9.0 | 32634 | 0.2118 | 19894712 |
| 0.0003 | 10.0 | 36260 | 0.2350 | 22103448 |
| 0.0001 | 11.0 | 39886 | 0.2672 | 24314040 |
| 0.0001 | 12.0 | 43512 | 0.3277 | 26522184 |
| 0.0001 | 13.0 | 47138 | 0.4018 | 28731152 |
| 0.0002 | 14.0 | 50764 | 0.4293 | 30934032 |
| 0.0 | 15.0 | 54390 | 0.4618 | 33147696 |
| 0.0 | 16.0 | 58016 | 0.5101 | 35360272 |
| 0.0 | 17.0 | 61642 | 0.5407 | 37574896 |
| 0.0 | 18.0 | 65268 | 0.5613 | 39772600 |
| 0.0162 | 19.0 | 68894 | 0.5676 | 41981688 |
| 0.0001 | 20.0 | 72520 | 0.5704 | 44193480 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_piqa_123_1762687058
Base model
meta-llama/Meta-Llama-3-8B-Instruct