train_qnli_101112_1760638090

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the qnli dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1869
  • Num Input Tokens Seen: 207147488

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 101112
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.1537 1.0 23567 0.1973 10356896
0.4046 2.0 47134 0.1900 20715296
0.1866 3.0 70701 0.1885 31065184
0.0728 4.0 94268 0.1873 41428128
0.1521 5.0 117835 0.1885 51784320
0.0744 6.0 141402 0.1887 62144160
0.2178 7.0 164969 0.1876 72511552
0.2643 8.0 188536 0.1871 82864256
0.0972 9.0 212103 0.1884 93220320
0.3013 10.0 235670 0.1869 103572992
0.1516 11.0 259237 0.1869 113924768
0.2913 12.0 282804 0.1884 124282240
0.1283 13.0 306371 0.1878 134645600
0.0657 14.0 329938 0.1882 145000704
0.053 15.0 353505 0.1877 155349152
0.2966 16.0 377072 0.1882 165706304
0.2382 17.0 400639 0.1870 176064704
0.2344 18.0 424206 0.1870 186423936
0.2151 19.0 447773 0.1870 196786464
0.2732 20.0 471340 0.1870 207147488

Framework versions

  • PEFT 0.17.1
  • Transformers 4.51.3
  • Pytorch 2.9.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_qnli_101112_1760638090

Adapter
(2094)
this model

Evaluation results