train_qnli_1755694488

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the qnli dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1079
  • Num Input Tokens Seen: 94426336

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.0296 0.5 23567 0.0760 4726160
0.0621 1.0 47134 0.0588 9443856
0.137 1.5 70701 0.0478 14171744
0.0083 2.0 94268 0.0421 18885616
0.0141 2.5 117835 0.0430 23594480
0.0028 3.0 141402 0.0553 28322288
0.0069 3.5 164969 0.0423 33044192
0.1483 4.0 188536 0.0451 37765424
0.07 4.5 212103 0.0431 42484624
0.0074 5.0 235670 0.0649 47208432
0.0032 5.5 259237 0.0495 51927872
0.1186 6.0 282804 0.0562 56653952
0.0011 6.5 306371 0.0570 61379616
0.0028 7.0 329938 0.0591 66100352
0.0825 7.5 353505 0.0679 70821872
0.0006 8.0 377072 0.0649 75542800
0.0001 8.5 400639 0.0915 80264848
0.0 9.0 424206 0.0899 84986304
0.0001 9.5 447773 0.1052 89703232
0.0 10.0 471340 0.1079 94426336

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_qnli_1755694488

Adapter
(2098)
this model

Evaluation results