train_qqp_1754652135

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the qqp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1866
  • Num Input Tokens Seen: 250787112

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2031 0.5 40933 0.2528 12552544
0.2786 1.0 81866 0.2403 25087944
0.2791 1.5 122799 0.2292 37621672
0.2403 2.0 163732 0.2193 50164864
0.2049 2.5 204665 0.2120 62700096
0.1847 3.0 245598 0.2067 75242048
0.181 3.5 286531 0.2104 87769248
0.2662 4.0 327464 0.1999 100320328
0.2374 4.5 368397 0.2003 112855464
0.2511 5.0 409330 0.1927 125387608
0.1266 5.5 450263 0.1914 137931704
0.1893 6.0 491196 0.1936 150463800
0.2127 6.5 532129 0.1902 163003576
0.2026 7.0 573062 0.1895 175543400
0.1628 7.5 613995 0.1886 188096200
0.2036 8.0 654928 0.1866 200622552
0.1424 8.5 695861 0.1876 213151000
0.1818 9.0 736794 0.1872 225701792
0.1845 9.5 777727 0.1875 238243968
0.2161 10.0 818660 0.1873 250787112

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_qqp_1754652135

Adapter
(2098)
this model

Evaluation results