train_siqa_1754652166

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the siqa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3209
  • Num Input Tokens Seen: 29840264

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 123
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.3295 0.5 3759 0.2344 1495072
0.1035 1.0 7518 0.2057 2984720
0.1792 1.5 11277 0.1993 4477104
0.2668 2.0 15036 0.1963 5970384
0.2112 2.5 18795 0.1914 7462384
0.1166 3.0 22554 0.1923 8954176
0.0182 3.5 26313 0.1974 10445088
0.1845 4.0 30072 0.1851 11937344
0.222 4.5 33831 0.1964 13430048
0.2374 5.0 37590 0.1964 14920992
0.0194 5.5 41349 0.2016 16412032
0.1128 6.0 45108 0.1903 17904680
0.1917 6.5 48867 0.2089 19397416
0.341 7.0 52626 0.2050 20888856
0.0722 7.5 56385 0.2190 22381080
0.3229 8.0 60144 0.2185 23872880
0.1923 8.5 63903 0.2270 25363344
0.1182 9.0 67662 0.2255 26855848
0.1978 9.5 71421 0.2302 28348712
0.09 10.0 75180 0.2308 29840264

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_siqa_1754652166

Adapter
(2124)
this model

Evaluation results