train_winogrande_101112_1760638073

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the winogrande dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0604
  • Num Input Tokens Seen: 38366624

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 101112
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.1899 1.0 9090 0.1525 1917952
0.0784 2.0 18180 0.0934 3835840
0.0395 3.0 27270 0.0797 5753152
0.2799 4.0 36360 0.0697 7672000
0.0141 5.0 45450 0.0657 9590080
0.1489 6.0 54540 0.0621 11509088
0.0257 7.0 63630 0.0613 13427712
0.008 8.0 72720 0.0637 15346672
0.0722 9.0 81810 0.0616 17265344
0.0662 10.0 90900 0.0604 19184224
0.0033 11.0 99990 0.0685 21102912
0.0008 12.0 109080 0.0705 23021312
0.002 13.0 118170 0.0719 24938688
0.0553 14.0 127260 0.0716 26857088
0.0197 15.0 136350 0.0733 28775840
0.0331 16.0 145440 0.0760 30693088
0.1504 17.0 154530 0.0764 32612480
0.0958 18.0 163620 0.0781 34530176
0.0019 19.0 172710 0.0784 36447600
0.0013 20.0 181800 0.0779 38366624

Framework versions

  • PEFT 0.17.1
  • Transformers 4.51.3
  • Pytorch 2.9.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_winogrande_101112_1760638073

Adapter
(2098)
this model

Evaluation results