train_wsc_101112_1760446104
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the wsc dataset. It achieves the following results on the evaluation set:
- Loss: 0.4362
- Num Input Tokens Seen: 1471184
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 101112
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|---|---|---|---|---|
| 0.3629 | 1.504 | 188 | 0.4066 | 74288 |
| 0.3344 | 3.008 | 376 | 0.4253 | 147040 |
| 0.3523 | 4.5120 | 564 | 0.3512 | 221408 |
| 0.3645 | 6.016 | 752 | 0.3525 | 294736 |
| 0.3869 | 7.52 | 940 | 0.3689 | 368400 |
| 0.3533 | 9.024 | 1128 | 0.3554 | 441968 |
| 0.3493 | 10.528 | 1316 | 0.3552 | 514960 |
| 0.3368 | 12.032 | 1504 | 0.3549 | 588032 |
| 0.3421 | 13.536 | 1692 | 0.3556 | 662784 |
| 0.3505 | 15.04 | 1880 | 0.3548 | 735760 |
| 0.3536 | 16.544 | 2068 | 0.3628 | 809088 |
| 0.3419 | 18.048 | 2256 | 0.3575 | 883568 |
| 0.3534 | 19.552 | 2444 | 0.3595 | 958720 |
| 0.3313 | 21.056 | 2632 | 0.3684 | 1031776 |
| 0.3376 | 22.56 | 2820 | 0.3696 | 1105632 |
| 0.3543 | 24.064 | 3008 | 0.3914 | 1179856 |
| 0.3551 | 25.568 | 3196 | 0.4112 | 1253280 |
| 0.328 | 27.072 | 3384 | 0.4254 | 1327824 |
| 0.2946 | 28.576 | 3572 | 0.4310 | 1400944 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_wsc_101112_1760446104
Base model
meta-llama/Meta-Llama-3-8B-Instruct