train_wsc_123_1760367295
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the wsc dataset. It achieves the following results on the evaluation set:
- Loss: 7.2257
- Num Input Tokens Seen: 1465808
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|---|---|---|---|---|
| 0.3676 | 1.504 | 188 | 0.3917 | 73760 |
| 0.3837 | 3.008 | 376 | 0.3505 | 148032 |
| 0.366 | 4.5120 | 564 | 0.3529 | 222944 |
| 0.335 | 6.016 | 752 | 0.3569 | 294320 |
| 0.3444 | 7.52 | 940 | 0.3624 | 369248 |
| 0.3306 | 9.024 | 1128 | 0.3562 | 442000 |
| 0.353 | 10.528 | 1316 | 0.3476 | 516624 |
| 0.3738 | 12.032 | 1504 | 0.3542 | 589072 |
| 0.3864 | 13.536 | 1692 | 0.3649 | 662256 |
| 0.3253 | 15.04 | 1880 | 0.3564 | 736272 |
| 0.348 | 16.544 | 2068 | 0.3542 | 809824 |
| 0.3507 | 18.048 | 2256 | 0.3494 | 882480 |
| 0.3609 | 19.552 | 2444 | 0.3476 | 956000 |
| 0.3454 | 21.056 | 2632 | 0.3523 | 1028736 |
| 0.3374 | 22.56 | 2820 | 0.3517 | 1102672 |
| 0.3512 | 24.064 | 3008 | 0.3494 | 1176448 |
| 0.3621 | 25.568 | 3196 | 0.3530 | 1249968 |
| 0.3364 | 27.072 | 3384 | 0.3540 | 1322608 |
| 0.3485 | 28.576 | 3572 | 0.3533 | 1396032 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_wsc_123_1760367295
Base model
meta-llama/Meta-Llama-3-8B-Instruct