train_wsc_42_1760451064
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the wsc dataset. It achieves the following results on the evaluation set:
- Loss: 0.3545
- Num Input Tokens Seen: 1481040
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|---|---|---|---|---|
| 0.3815 | 1.504 | 188 | 0.3588 | 73872 |
| 0.5568 | 3.008 | 376 | 0.4372 | 148192 |
| 0.4117 | 4.5120 | 564 | 0.3896 | 221984 |
| 0.3253 | 6.016 | 752 | 0.3690 | 295616 |
| 0.3936 | 7.52 | 940 | 0.3659 | 370688 |
| 0.4325 | 9.024 | 1128 | 0.4053 | 444448 |
| 0.4065 | 10.528 | 1316 | 0.3663 | 519088 |
| 0.3462 | 12.032 | 1504 | 0.3871 | 592272 |
| 0.3683 | 13.536 | 1692 | 0.3882 | 667952 |
| 0.4389 | 15.04 | 1880 | 0.4057 | 741072 |
| 0.4152 | 16.544 | 2068 | 0.3668 | 815840 |
| 0.353 | 18.048 | 2256 | 0.3497 | 889584 |
| 0.3771 | 19.552 | 2444 | 0.3543 | 964576 |
| 0.3377 | 21.056 | 2632 | 0.3533 | 1038032 |
| 0.3419 | 22.56 | 2820 | 0.3698 | 1112112 |
| 0.3335 | 24.064 | 3008 | 0.3605 | 1186496 |
| 0.3445 | 25.568 | 3196 | 0.3572 | 1261104 |
| 0.3473 | 27.072 | 3384 | 0.3560 | 1336384 |
| 0.3622 | 28.576 | 3572 | 0.3553 | 1410480 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rbelanec/train_wsc_42_1760451064
Base model
meta-llama/Meta-Llama-3-8B-Instruct