summarization_model
This model is a fine-tuned version of google-t5/t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.5844
- Rouge1: 0.1489
- Rouge2: 0.0567
- Rougel: 0.1219
- Rougelsum: 0.1218
- Gen Len: 20.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|---|---|---|---|---|---|---|---|---|
| No log | 1.0 | 62 | 2.8863 | 0.137 | 0.0437 | 0.1112 | 0.1112 | 20.0 |
| No log | 2.0 | 124 | 2.6658 | 0.142 | 0.0491 | 0.1166 | 0.1168 | 20.0 |
| No log | 3.0 | 186 | 2.6022 | 0.1487 | 0.058 | 0.1222 | 0.1221 | 20.0 |
| No log | 4.0 | 248 | 2.5844 | 0.1489 | 0.0567 | 0.1219 | 0.1218 | 20.0 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.2
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rlimonta/summarization_model
Base model
google-t5/t5-small