See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-Math-7B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 0c268a24a189e736_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0c268a24a189e736_train_data.json
type:
field_instruction: sentence1
field_output: sentence2
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/66dfe5fa-fd69-4293-abab-78e89c0f92d3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_steps: 1836
micro_batch_size: 4
mlflow_experiment_name: /tmp/0c268a24a189e736_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3fb659b5-4304-4b9e-8d6e-5af1f430fc24
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3fb659b5-4304-4b9e-8d6e-5af1f430fc24
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
66dfe5fa-fd69-4293-abab-78e89c0f92d3
This model is a fine-tuned version of unsloth/Qwen2.5-Math-7B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4781
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1836
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 6.4697 | 0.0002 | 1 | 6.1452 |
| 2.0781 | 0.0190 | 100 | 2.0017 |
| 1.9594 | 0.0380 | 200 | 1.8549 |
| 1.5803 | 0.0570 | 300 | 1.7733 |
| 1.6428 | 0.0760 | 400 | 1.7145 |
| 1.5254 | 0.0950 | 500 | 1.6687 |
| 2.2101 | 0.1140 | 600 | 1.6367 |
| 2.0177 | 0.1329 | 700 | 1.6152 |
| 1.39 | 0.1519 | 800 | 1.5810 |
| 1.6422 | 0.1709 | 900 | 1.5632 |
| 1.136 | 0.1899 | 1000 | 1.5430 |
| 1.6514 | 0.2089 | 1100 | 1.5243 |
| 1.6233 | 0.2279 | 1200 | 1.5086 |
| 1.0544 | 0.2469 | 1300 | 1.4982 |
| 1.2562 | 0.2659 | 1400 | 1.4917 |
| 1.4276 | 0.2849 | 1500 | 1.4858 |
| 1.4498 | 0.3039 | 1600 | 1.4806 |
| 1.2587 | 0.3229 | 1700 | 1.4786 |
| 1.232 | 0.3419 | 1800 | 1.4781 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for romainnn/66dfe5fa-fd69-4293-abab-78e89c0f92d3
Base model
Qwen/Qwen2.5-7B
Finetuned
Qwen/Qwen2.5-Math-7B
Finetuned
Qwen/Qwen2.5-Math-7B-Instruct
Finetuned
unsloth/Qwen2.5-Math-7B-Instruct