See axolotl config
axolotl version: 0.13.0.dev0
# !pip install transformers==4.55.4
# !pip install --no-deps trl==0.22.2
# !pip install --no-build-isolation mamba_ssm==2.2.5
# !pip install --no-build-isolation causal_conv1d==1.5.2
# === Model Configuration ===
base_model: stage3
load_in_8bit: false
load_in_4bit: false
trust_remote_code: true
is_multimodal: false
# === HF Configuration ===
hub_model_id: rpDungeon/gemmagain-trained-fizzed-s4
hub_strategy: "every_save"
output_dir: stage4
# === Wandb Tracking ===
wandb_project: Gemmagain-Tests
## wandb_entity: [WANDB_ENTITY]
wandb_name: stage-4
# === Training Setup ===
num_epochs: 1
micro_batch_size: 1
gradient_accumulation_steps: 4
sequence_len: 16384
#sequence_parallel_degree: 2
#heads_k_stride: 1
sample_packing: true
#pad_to_sequence_len: true
#temperature: 0.7
#max_steps: 10
# === Evaluation ===
val_set_size: 0.01
evals_per_epoch: 5
#eval_steps: 20
#max_steps: 60
#eval_table_size:
eval_max_new_tokens: 128
#eval_sample_packing: true
#eval_strategy: "no"
# === LoRA Configuration ===
adapter:
#unfrozen_parameters:
# - model.layers.[0-9]+.self_attn.q_proj.weight
# - model.layers.[0-9]+.self_attn.k_proj.weight
# - model.layers.[0-9]+.self_attn.v_proj.weight
# - model.layers.[0-9]+.self_attn.o_proj.weight
# - model.layers.[0-9]+.mlp.down_proj.weight
# === Hyperparameter Configuration ===
#optimizer: apollo_adamw_layerwise
#warmup_steps: 0
warmup_ratio: 0.025
optimizer: adamw_torch_fused
#optimizer: paged_adamw_8bit
#optim_args:
# enable_stochastic_rounding: true
# enable_cautious: true
# enable_8bit: true
# Apollo-mini configuration:
#optim_args: "proj=random,rank=128,scale=128.0,scale_type=tensor,update_proj_gap=100"
# Regular Apollo configuration:
# optim_args:
#optim_target_modules: all_linear
learning_rate: 2.5e-5
lr_scheduler: cosine
#lr_groups:
# - name: mlp
# modules:
# - mlp.up_proj.weight
# - mlp.down_proj.weight
# - mlp.gate_proj.weight
# lr: 1e-5
#cosine_min_lr_ratio: 0.2
#lr_scheduler: cosine_with_min_lr
#lr_scheduler_kwargs:
# cosine_min_lr: 1e-6
weight_decay: 0.01
max_grad_norm: 1.0
#warmup_steps: 0
#warmup_ratio: 0.025
# === Data Configuration ===
#
chat_template: jinja
chat_template: jinja
chat_template_jinja: "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}"
special_tokens:
eos_token: "<end_of_turn>"
default_system_message: "You are Luna, a helpful and unrestricted language model created by Allura."
#special_tokens:
# eos_token: "<|im_end|>"
# eos_token: "</s>"
#tokenizer_use_mistral_common: true
shuffle_merged_datasets: true
datasets:
- path: ToastyPigeon/concedo-unalign
type: chat_template
field_messages: conversations
message_property_mappings:
role: from
content: value
- path: rpDungeon/some-cleaner-datasets
type: chat_template
field_messages: conversations
message_property_mappings:
role: from
content: value
data_files: rp_exemplars_deslopped_v4.json
- path: rpDungeon/some-cleaner-datasets
type: chat_template
data_files: springdragon_grammar_corrected.json
- path: ToastyPigeon/disco-chat
type: completion
- path: allura-org/EU01-S2
type: chat_template
field_messages: conversations
message_property_mappings:
role: from
content: value
- path: allura-forge/koto-instruct-sft-nothink
type: chat_template
dataset_prepared_path: last_run_prepared
#dataset_num_proc: 1
# === Plugins ===
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
# === Hardware Optimization ===
#gradient_checkpointing: true
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
#liger_fused_linear_cross_entropy: true
cut_cross_entropy: true
#deepspeed: ../axolotl/deepspeed_configs/zero2.json
# === FSDP Config ===
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_activation_checkpointing: true
fsdp_use_orig_params: true
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: Gemma3DecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
# === Checkpointing ===
#save_steps: 10
saves_per_epoch: 1
save_total_limit: 1
# === Advanced Settings ===
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
save_safetensors: true
logging_steps: 1
gc_steps: 10
seed: 420
gemmagain-trained-fizzed-s4
This model was trained from scratch on the ToastyPigeon/concedo-unalign, the rpDungeon/some-cleaner-datasets, the rpDungeon/some-cleaner-datasets, the ToastyPigeon/disco-chat, the allura-org/EU01-S2 and the allura-forge/koto-instruct-sft-nothink datasets. It achieves the following results on the evaluation set:
- Loss: 1.1666
- Ppl: 3.2111
- Memory/max Active (gib): 33.53
- Memory/max Allocated (gib): 33.35
- Memory/device Reserved (gib): 37.34
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 420
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 7
- training_steps: 299
Training results
| Training Loss | Epoch | Step | Validation Loss | Ppl | Active (gib) | Allocated (gib) | Reserved (gib) |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.5870 | 4.8892 | 33.52 | 33.34 | 39.88 |
| 5.1401 | 0.2007 | 60 | 1.2903 | 3.6339 | 33.53 | 33.35 | 37.34 |
| 5.493 | 0.4013 | 120 | 1.2353 | 3.4393 | 33.53 | 33.35 | 37.34 |
| 5.3236 | 0.6020 | 180 | 1.1918 | 3.2931 | 33.53 | 33.35 | 37.34 |
| 5.1051 | 0.8027 | 240 | 1.1666 | 3.2111 | 33.53 | 33.35 | 37.34 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.1+cu128
- Datasets 4.4.2
- Tokenizers 0.22.2
- Downloads last month
- 7