SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("s4um1l/legal-ft-c877f154-2c3e-408a-aab0-3064cb663f12")
# Run inference
sentences = [
'Why are LLM use-cases involving long inputs considered more interesting than those relying solely on short prompts?',
'Longer inputs dramatically increase the scope of problems that can be solved with an LLM: you can now throw in an entire book and ask questions about its contents, but more importantly you can feed in a lot of example code to help the model correctly solve a coding problem. LLM use-cases that involve long inputs are far more interesting to me than short prompts that rely purely on the information already baked into the model weights. Many of my tools were built using this pattern.',
'Here’s the rest of the transcript. It’s bland and generic, but my phone can pitch bland and generic Christmas movies to Netflix now!\nLLM prices crashed, thanks to competition and increased efficiency\nThe past twelve months have seen a dramatic collapse in the cost of running a prompt through the top tier hosted LLMs.\nIn December 2023 (here’s the Internet Archive for the OpenAI pricing page) OpenAI were charging $30/million input tokens for GPT-4, $10/mTok for the then-new GPT-4 Turbo and $1/mTok for GPT-3.5 Turbo.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.9167 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9167 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9167 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9638 |
| cosine_mrr@10 | 0.9514 |
| cosine_map@100 | 0.9514 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 156 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 156 samples:
sentence_0 sentence_1 type string string details - min: 12 tokens
- mean: 20.88 tokens
- max: 33 tokens
- min: 43 tokens
- mean: 135.32 tokens
- max: 214 tokens
- Samples:
sentence_0 sentence_1 Why does the author find the term “agents” frustrating?“Agents” still haven’t really happened yet
I find the term “agents” extremely frustrating. It lacks a single, clear and widely understood meaning... but the people who use the term never seem to acknowledge that.
If you tell me that you are building “agents”, you’ve conveyed almost no information to me at all. Without reading your mind I have no way of telling which of the dozens of possible definitions you are talking about.What problem does the author highlight about people using the term “agents”?“Agents” still haven’t really happened yet
I find the term “agents” extremely frustrating. It lacks a single, clear and widely understood meaning... but the people who use the term never seem to acknowledge that.
If you tell me that you are building “agents”, you’ve conveyed almost no information to me at all. Without reading your mind I have no way of telling which of the dozens of possible definitions you are talking about.When did Meta release the original Llama model?Then in February, Meta released Llama. And a few weeks later in March, Georgi Gerganov released code that got it working on a MacBook.
I wrote about how Large language models are having their Stable Diffusion moment, and with hindsight that was a very good call!
This unleashed a whirlwind of innovation, which was accelerated further in July when Meta released Llama 2—an improved version which, crucially, included permission for commercial use.
Today there are literally thousands of LLMs that can be run locally, on all manner of different devices. - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 10per_device_eval_batch_size: 10num_train_epochs: 10multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 10per_device_eval_batch_size: 10per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | cosine_ndcg@10 |
|---|---|---|
| 1.0 | 16 | 0.9609 |
| 2.0 | 32 | 0.9455 |
| 3.0 | 48 | 0.9484 |
| 3.125 | 50 | 0.9484 |
| 4.0 | 64 | 0.9484 |
| 5.0 | 80 | 0.9638 |
| 6.0 | 96 | 0.9638 |
| 6.25 | 100 | 0.9638 |
| 7.0 | 112 | 0.9638 |
| 8.0 | 128 | 0.9638 |
| 9.0 | 144 | 0.9638 |
| 9.375 | 150 | 0.9638 |
| 10.0 | 160 | 0.9638 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
Model tree for s4um1l/legal-ft-c877f154-2c3e-408a-aab0-3064cb663f12
Base model
Snowflake/snowflake-arctic-embed-lEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.917
- Cosine Accuracy@3 on Unknownself-reported1.000
- Cosine Accuracy@5 on Unknownself-reported1.000
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.917
- Cosine Precision@3 on Unknownself-reported0.333
- Cosine Precision@5 on Unknownself-reported0.200
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.917
- Cosine Recall@3 on Unknownself-reported1.000