|
|
--- |
|
|
datasets: |
|
|
- mozilla-foundation/common_voice_13_0 |
|
|
language: |
|
|
- zh |
|
|
base_model: |
|
|
- openai/whisper-large-v3-turbo |
|
|
pipeline_tag: automatic-speech-recognition |
|
|
--- |
|
|
|
|
|
# Model Card for Model ID |
|
|
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
|
|
This model card describes a fine-tuned version of the [Openai/Whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo), optimized for Mandarin automatic speech recognition (ASR). It achieves the following results on the evaluation set: |
|
|
<br> |
|
|
- Common Voice 13.0 dataset(test):<br> |
|
|
Wer before fine-tune: 77.08 |
|
|
<br> |
|
|
Wer after fine-tune: 45.47 |
|
|
<br> |
|
|
- Common Voice 16.1 dataset(test):<br> |
|
|
Wer before fine-tune: 77.57 |
|
|
<br> |
|
|
Wer after fine-tune: 45.9 |
|
|
|
|
|
|
|
|
## Uses |
|
|
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
|
```bash |
|
|
import torch |
|
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
|
from datasets import load_dataset |
|
|
|
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
|
|
model_id = "sandy1990418/whisper-large-v3-turbo-zh-tw" |
|
|
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
|
) |
|
|
model.to(device) |
|
|
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
|
|
pipe = pipeline( |
|
|
"automatic-speech-recognition", |
|
|
model=model, |
|
|
tokenizer=processor.tokenizer, |
|
|
feature_extractor=processor.feature_extractor, |
|
|
torch_dtype=torch_dtype, |
|
|
device=device, |
|
|
) |
|
|
|
|
|
dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") |
|
|
sample = dataset[0]["audio"] |
|
|
|
|
|
result = pipe(sample) |
|
|
print(result["text"]) |
|
|
|
|
|
``` |