dl2_hw2 / README.md
semeka's picture
push bert-finetuned-ner-v1
0133cd7 verified
metadata
library_name: transformers
license: mit
base_model: BAAI/bge-small-en-v1.5
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: dl2_hw2
    results: []

dl2_hw2

This model is a fine-tuned version of BAAI/bge-small-en-v1.5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0818
  • Precision: 0.8836
  • Recall: 0.9139
  • F1: 0.8985
  • Accuracy: 0.9802

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0739 1.0 626 0.0923 0.8679 0.9072 0.8871 0.9780
0.064 2.0 1252 0.0834 0.8774 0.9145 0.8956 0.9795
0.0563 3.0 1878 0.0818 0.8836 0.9139 0.8985 0.9802

Framework versions

  • Transformers 4.53.3
  • Pytorch 2.6.0+cu124
  • Datasets 4.1.1
  • Tokenizers 0.21.2