Spaces:
Sleeping
Sleeping
File size: 14,019 Bytes
8d810b6 23e4994 8d810b6 23e4994 e6c2921 1ce2ad9 6b934fc 23e4994 1ea5800 8d810b6 6b934fc 23e4994 6b934fc 23e4994 1ea5800 6b934fc a5bc77a 6b934fc 23e4994 1ce2ad9 6b934fc 23e4994 3b9b877 23e4994 6b934fc 23e4994 6b934fc 23e4994 6b934fc 23e4994 3b9b877 8d810b6 23e4994 3b9b877 23e4994 3b9b877 23e4994 3b9b877 23e4994 8d810b6 23e4994 3b9b877 8d810b6 3b9b877 8d810b6 3b9b877 23e4994 3b9b877 8d810b6 1ea5800 1ce2ad9 1ea5800 1ce2ad9 1ea5800 23e4994 1ea5800 23e4994 1ea5800 23e4994 1ea5800 23e4994 1ea5800 1ce2ad9 1ea5800 1ce2ad9 1ea5800 23e4994 1ea5800 23e4994 1ea5800 23e4994 1ea5800 1ce2ad9 1ea5800 1ce2ad9 1ea5800 23e4994 1ea5800 1ce2ad9 1ea5800 1ce2ad9 1ea5800 23e4994 1ea5800 3b9b877 1ea5800 4dcb991 1ea5800 23e4994 1ea5800 23e4994 1ea5800 4dcb991 1ea5800 1ce2ad9 1ea5800 1ce2ad9 1ea5800 6b934fc 1ea5800 1ce2ad9 1ea5800 1ce2ad9 1ea5800 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from NoCodeTextClassifier.EDA import Informations, Visualizations
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from NoCodeTextClassifier.preprocessing import process, TextCleaner, Vectorization
from NoCodeTextClassifier.models import Models
import os
import pickle
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Utility functions
def save_artifacts(obj, folder_name, file_name):
"""Save artifacts like encoders and vectorizers"""
os.makedirs(folder_name, exist_ok=True)
with open(os.path.join(folder_name, file_name), 'wb') as f:
pickle.dump(obj, f)
def load_artifacts(folder_name, file_name):
"""Load saved artifacts"""
try:
with open(os.path.join(folder_name, file_name), 'rb') as f:
return pickle.load(f)
except FileNotFoundError:
st.error(f"File {file_name} not found in {folder_name} folder")
return None
def load_model(model_name):
"""Load trained model"""
try:
with open(os.path.join('models', model_name), 'rb') as f:
return pickle.load(f)
except FileNotFoundError:
st.error(f"Model {model_name} not found. Please train a model first.")
return None
def predict_text(model_name, text, vectorizer_type="tfidf"):
"""Make prediction on new text"""
try:
# Load model
model = load_model(model_name)
if model is None:
return None, None
# Load vectorizer
vectorizer_file = f"{vectorizer_type}_vectorizer.pkl"
vectorizer = load_artifacts("artifacts", vectorizer_file)
if vectorizer is None:
return None, None
# Load label encoder
encoder = load_artifacts("artifacts", "encoder.pkl")
if encoder is None:
return None, None
# Clean and vectorize text
text_cleaner = TextCleaner()
clean_text = text_cleaner.clean_text(text)
# Transform text using the same vectorizer used during training
text_vector = vectorizer.transform([clean_text])
# Make prediction
prediction = model.predict(text_vector)
prediction_proba = None
# Get prediction probabilities if available
if hasattr(model, 'predict_proba'):
try:
prediction_proba = model.predict_proba(text_vector)[0]
except:
pass
# Decode prediction
predicted_label = encoder.inverse_transform(prediction)[0]
return predicted_label, prediction_proba
except Exception as e:
st.error(f"Error during prediction: {str(e)}")
return None, None
# Streamlit App
st.title('No Code Text Classification App')
st.write('Understand the behavior of your text data and train a model to classify the text data')
# Sidebar
section = st.sidebar.radio("Choose Section", ["Data Analysis", "Train Model", "Predictions"])
# Upload Data
st.sidebar.subheader("Upload Your Dataset")
train_data = st.sidebar.file_uploader("Upload training data", type=["csv"])
test_data = st.sidebar.file_uploader("Upload test data (optional)", type=["csv"])
# Global variables to store data and settings
if 'vectorizer_type' not in st.session_state:
st.session_state.vectorizer_type = "tfidf"
if train_data is not None:
try:
train_df = pd.read_csv(train_data, encoding='latin1')
if test_data is not None:
test_df = pd.read_csv(test_data, encoding='latin1')
else:
test_df = None
st.write("Training Data Preview:")
st.write(train_df.head(3))
columns = train_df.columns.tolist()
text_data = st.sidebar.selectbox("Choose the text column:", columns)
target = st.sidebar.selectbox("Choose the target column:", columns)
# Process data
info = Informations(train_df, text_data, target)
train_df['clean_text'] = info.clean_text()
train_df['text_length'] = info.text_length()
# Handle label encoding manually if the class doesn't store encoder
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
train_df['target'] = label_encoder.fit_transform(train_df[target])
# Save label encoder for later use
os.makedirs("artifacts", exist_ok=True)
save_artifacts(label_encoder, "artifacts", "encoder.pkl")
except Exception as e:
st.error(f"Error loading data: {str(e)}")
train_df = None
info = None
# Data Analysis Section
if section == "Data Analysis":
if train_data is not None and train_df is not None:
try:
st.subheader("Get Insights from the Data")
st.write("Data Shape:", info.shape())
st.write("Class Imbalance:", info.class_imbalanced())
st.write("Missing Values:", info.missing_values())
st.write("Processed Data Preview:")
st.write(train_df[['clean_text', 'text_length', 'target']].head(3))
st.markdown("**Text Length Analysis**")
st.write(info.analysis_text_length('text_length'))
# Calculate correlation manually since we handled encoding separately
correlation = train_df[['text_length', 'target']].corr().iloc[0, 1]
st.write(f"Correlation between Text Length and Target: {correlation:.4f}")
st.subheader("Visualizations")
vis = Visualizations(train_df, text_data, target)
vis.class_distribution()
vis.text_length_distribution()
except Exception as e:
st.error(f"Error in data analysis: {str(e)}")
else:
st.warning("Please upload training data to get insights")
# Train Model Section
elif section == "Train Model":
if train_data is not None and train_df is not None:
try:
st.subheader("Train a Model")
# Create two columns for model selection
col1, col2 = st.columns(2)
with col1:
model = st.radio("Choose the Model", [
"Logistic Regression", "Decision Tree",
"Random Forest", "Linear SVC", "SVC",
"Multinomial Naive Bayes", "Gaussian Naive Bayes"
])
with col2:
vectorizer_choice = st.radio("Choose Vectorizer", ["Tfidf Vectorizer", "Count Vectorizer"])
# Initialize vectorizer
if vectorizer_choice == "Tfidf Vectorizer":
vectorizer = TfidfVectorizer(max_features=10000)
st.session_state.vectorizer_type = "tfidf"
else:
vectorizer = CountVectorizer(max_features=10000)
st.session_state.vectorizer_type = "count"
st.write("Training Data Preview:")
st.write(train_df[['clean_text', 'target']].head(3))
# Vectorize text data
X = vectorizer.fit_transform(train_df['clean_text'])
y = train_df['target']
# Split data
X_train, X_test, y_train, y_test = process.split_data(X, y)
st.write(f"Data split - Train: {X_train.shape}, Test: {X_test.shape}")
# Save vectorizer for later use
vectorizer_filename = f"{st.session_state.vectorizer_type}_vectorizer.pkl"
save_artifacts(vectorizer, "artifacts", vectorizer_filename)
if st.button("Start Training"):
with st.spinner("Training model..."):
models = Models(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test)
# Train selected model
if model == "Logistic Regression":
models.LogisticRegression()
elif model == "Decision Tree":
models.DecisionTree()
elif model == "Linear SVC":
models.LinearSVC()
elif model == "SVC":
models.SVC()
elif model == "Multinomial Naive Bayes":
models.MultinomialNB()
elif model == "Random Forest":
models.RandomForestClassifier()
elif model == "Gaussian Naive Bayes":
models.GaussianNB()
st.success("Model training completed!")
st.info("You can now use the 'Predictions' section to classify new text.")
except Exception as e:
st.error(f"Error in model training: {str(e)}")
else:
st.warning("Please upload training data to train a model")
# Predictions Section
elif section == "Predictions":
st.subheader("Perform Predictions on New Text")
# Check if models exist
if os.path.exists("models") and os.listdir("models"):
# Text input for prediction
text_input = st.text_area("Enter the text to classify:", height=100)
# Model selection
available_models = [f for f in os.listdir("models") if f.endswith('.pkl')]
if available_models:
selected_model = st.selectbox("Choose the trained model:", available_models)
# Prediction button
if st.button("Predict", key="single_predict"):
if text_input.strip():
with st.spinner("Making prediction..."):
predicted_label, prediction_proba = predict_text(
selected_model,
text_input,
st.session_state.get('vectorizer_type', 'tfidf')
)
if predicted_label is not None:
st.success("Prediction completed!")
# Display results
st.markdown("### Prediction Results")
st.markdown(f"**Input Text:** {text_input}")
st.markdown(f"**Predicted Class:** {predicted_label}")
# Display probabilities if available
if prediction_proba is not None:
st.markdown("**Class Probabilities:**")
# Load encoder to get class names
encoder = load_artifacts("artifacts", "encoder.pkl")
if encoder is not None:
classes = encoder.classes_
prob_df = pd.DataFrame({
'Class': classes,
'Probability': prediction_proba
}).sort_values('Probability', ascending=False)
st.bar_chart(prob_df.set_index('Class'))
st.dataframe(prob_df)
else:
st.warning("Please enter some text to classify")
else:
st.warning("No trained models found. Please train a model first.")
else:
st.warning("No trained models found. Please go to 'Train Model' section to train a model first.")
# Option to classify multiple texts
st.markdown("---")
st.subheader("Batch Predictions")
uploaded_file = st.file_uploader("Upload a CSV file with text to classify", type=['csv'])
if uploaded_file is not None:
try:
batch_df = pd.read_csv(uploaded_file, encoding='latin1')
st.write("Uploaded data preview:")
st.write(batch_df.head())
# Select text column
text_column = st.selectbox("Select the text column:", batch_df.columns.tolist())
if os.path.exists("models") and os.listdir("models"):
available_models = [f for f in os.listdir("models") if f.endswith('.pkl')]
batch_model = st.selectbox("Choose model for batch prediction:", available_models, key="batch_model")
if st.button("Run Batch Predictions", key="batch_predict"):
with st.spinner("Processing batch predictions..."):
predictions = []
for text in batch_df[text_column]:
pred, _ = predict_text(
batch_model,
str(text),
st.session_state.get('vectorizer_type', 'tfidf')
)
predictions.append(pred if pred is not None else "Error")
batch_df['Predicted_Class'] = predictions
st.success("Batch predictions completed!")
st.write("Results:")
st.write(batch_df[[text_column, 'Predicted_Class']])
# Download results
csv = batch_df.to_csv(index=False)
st.download_button(
label="Download predictions as CSV",
data=csv,
file_name="batch_predictions.csv",
mime="text/csv"
)
except Exception as e:
st.error(f"Error in batch prediction: {str(e)}") |