File size: 14,019 Bytes
8d810b6
 
 
 
23e4994
 
 
 
8d810b6
 
23e4994
e6c2921
1ce2ad9
6b934fc
23e4994
1ea5800
 
 
8d810b6
6b934fc
23e4994
6b934fc
23e4994
 
 
1ea5800
6b934fc
a5bc77a
6b934fc
23e4994
 
 
 
 
 
 
1ce2ad9
6b934fc
23e4994
3b9b877
23e4994
6b934fc
 
 
 
23e4994
6b934fc
 
 
 
 
23e4994
6b934fc
 
 
 
23e4994
3b9b877
 
8d810b6
23e4994
3b9b877
 
23e4994
3b9b877
 
 
23e4994
3b9b877
 
 
 
23e4994
8d810b6
23e4994
3b9b877
8d810b6
3b9b877
8d810b6
3b9b877
23e4994
3b9b877
8d810b6
1ea5800
 
 
1ce2ad9
1ea5800
 
1ce2ad9
1ea5800
 
 
 
 
 
 
 
23e4994
1ea5800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23e4994
1ea5800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23e4994
1ea5800
 
 
 
 
23e4994
1ea5800
 
 
1ce2ad9
1ea5800
 
 
 
 
 
 
 
 
1ce2ad9
1ea5800
 
 
 
23e4994
1ea5800
 
 
 
23e4994
1ea5800
 
 
 
 
23e4994
1ea5800
 
1ce2ad9
1ea5800
 
 
 
 
 
 
 
 
1ce2ad9
1ea5800
 
 
 
 
 
 
23e4994
1ea5800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce2ad9
1ea5800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce2ad9
1ea5800
 
23e4994
1ea5800
 
 
 
3b9b877
1ea5800
 
 
 
 
 
 
 
4dcb991
1ea5800
 
 
 
 
23e4994
1ea5800
 
 
 
 
 
 
 
 
 
 
 
23e4994
1ea5800
 
 
 
4dcb991
1ea5800
 
 
1ce2ad9
1ea5800
 
 
 
 
 
 
 
1ce2ad9
1ea5800
 
 
 
6b934fc
1ea5800
 
 
 
 
 
 
1ce2ad9
1ea5800
1ce2ad9
1ea5800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from NoCodeTextClassifier.EDA import Informations, Visualizations
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from NoCodeTextClassifier.preprocessing import process, TextCleaner, Vectorization  
from NoCodeTextClassifier.models import Models
import os
import pickle
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

# Utility functions
def save_artifacts(obj, folder_name, file_name):
    """Save artifacts like encoders and vectorizers"""
    os.makedirs(folder_name, exist_ok=True)
    with open(os.path.join(folder_name, file_name), 'wb') as f:
        pickle.dump(obj, f)

def load_artifacts(folder_name, file_name):
    """Load saved artifacts"""
    try:
        with open(os.path.join(folder_name, file_name), 'rb') as f:
            return pickle.load(f)
    except FileNotFoundError:
        st.error(f"File {file_name} not found in {folder_name} folder")
        return None

def load_model(model_name):
    """Load trained model"""
    try:
        with open(os.path.join('models', model_name), 'rb') as f:
            return pickle.load(f)
    except FileNotFoundError:
        st.error(f"Model {model_name} not found. Please train a model first.")
        return None

def predict_text(model_name, text, vectorizer_type="tfidf"):
    """Make prediction on new text"""
    try:
        # Load model
        model = load_model(model_name)
        if model is None:
            return None, None
        
        # Load vectorizer
        vectorizer_file = f"{vectorizer_type}_vectorizer.pkl"
        vectorizer = load_artifacts("artifacts", vectorizer_file)
        if vectorizer is None:
            return None, None
        
        # Load label encoder
        encoder = load_artifacts("artifacts", "encoder.pkl")
        if encoder is None:
            return None, None
        
        # Clean and vectorize text
        text_cleaner = TextCleaner()
        clean_text = text_cleaner.clean_text(text)
        
        # Transform text using the same vectorizer used during training
        text_vector = vectorizer.transform([clean_text])
        
        # Make prediction
        prediction = model.predict(text_vector)
        prediction_proba = None
        
        # Get prediction probabilities if available
        if hasattr(model, 'predict_proba'):
            try:
                prediction_proba = model.predict_proba(text_vector)[0]
            except:
                pass
        
        # Decode prediction
        predicted_label = encoder.inverse_transform(prediction)[0]
        
        return predicted_label, prediction_proba
        
    except Exception as e:
        st.error(f"Error during prediction: {str(e)}")
        return None, None

# Streamlit App
st.title('No Code Text Classification App')
st.write('Understand the behavior of your text data and train a model to classify the text data')

# Sidebar
section = st.sidebar.radio("Choose Section", ["Data Analysis", "Train Model", "Predictions"])

# Upload Data
st.sidebar.subheader("Upload Your Dataset")
train_data = st.sidebar.file_uploader("Upload training data", type=["csv"])
test_data = st.sidebar.file_uploader("Upload test data (optional)", type=["csv"])

# Global variables to store data and settings
if 'vectorizer_type' not in st.session_state:
    st.session_state.vectorizer_type = "tfidf"

if train_data is not None:
    try:
        train_df = pd.read_csv(train_data, encoding='latin1')
        
        if test_data is not None:
            test_df = pd.read_csv(test_data, encoding='latin1')
        else:
            test_df = None
            
        st.write("Training Data Preview:")
        st.write(train_df.head(3))
        
        columns = train_df.columns.tolist()
        text_data = st.sidebar.selectbox("Choose the text column:", columns)
        target = st.sidebar.selectbox("Choose the target column:", columns)

        # Process data
        info = Informations(train_df, text_data, target)
        train_df['clean_text'] = info.clean_text()
        train_df['text_length'] = info.text_length()
        
        # Handle label encoding manually if the class doesn't store encoder
        from sklearn.preprocessing import LabelEncoder
        label_encoder = LabelEncoder()
        train_df['target'] = label_encoder.fit_transform(train_df[target])
        
        # Save label encoder for later use
        os.makedirs("artifacts", exist_ok=True)
        save_artifacts(label_encoder, "artifacts", "encoder.pkl")
        
    except Exception as e:
        st.error(f"Error loading data: {str(e)}")
        train_df = None
        info = None

# Data Analysis Section
if section == "Data Analysis":
    if train_data is not None and train_df is not None:
        try:
            st.subheader("Get Insights from the Data")
            
            st.write("Data Shape:", info.shape())
            st.write("Class Imbalance:", info.class_imbalanced())
            st.write("Missing Values:", info.missing_values())

            st.write("Processed Data Preview:")
            st.write(train_df[['clean_text', 'text_length', 'target']].head(3))
            
            st.markdown("**Text Length Analysis**")
            st.write(info.analysis_text_length('text_length'))
            
            # Calculate correlation manually since we handled encoding separately
            correlation = train_df[['text_length', 'target']].corr().iloc[0, 1]
            st.write(f"Correlation between Text Length and Target: {correlation:.4f}")

            st.subheader("Visualizations")
            vis = Visualizations(train_df, text_data, target)
            vis.class_distribution()
            vis.text_length_distribution()

        except Exception as e:
            st.error(f"Error in data analysis: {str(e)}")
    else:
        st.warning("Please upload training data to get insights")

# Train Model Section
elif section == "Train Model":
    if train_data is not None and train_df is not None:
        try:
            st.subheader("Train a Model")

            # Create two columns for model selection
            col1, col2 = st.columns(2)

            with col1:
                model = st.radio("Choose the Model", [
                    "Logistic Regression", "Decision Tree", 
                    "Random Forest", "Linear SVC", "SVC",
                    "Multinomial Naive Bayes", "Gaussian Naive Bayes"
                ])
            
            with col2:
                vectorizer_choice = st.radio("Choose Vectorizer", ["Tfidf Vectorizer", "Count Vectorizer"])

            # Initialize vectorizer
            if vectorizer_choice == "Tfidf Vectorizer":
                vectorizer = TfidfVectorizer(max_features=10000)
                st.session_state.vectorizer_type = "tfidf"
            else:
                vectorizer = CountVectorizer(max_features=10000)
                st.session_state.vectorizer_type = "count"

            st.write("Training Data Preview:")
            st.write(train_df[['clean_text', 'target']].head(3))
            
            # Vectorize text data
            X = vectorizer.fit_transform(train_df['clean_text'])
            y = train_df['target']
            
            # Split data
            X_train, X_test, y_train, y_test = process.split_data(X, y)
            st.write(f"Data split - Train: {X_train.shape}, Test: {X_test.shape}")
            
            # Save vectorizer for later use
            vectorizer_filename = f"{st.session_state.vectorizer_type}_vectorizer.pkl"
            save_artifacts(vectorizer, "artifacts", vectorizer_filename)
            
            if st.button("Start Training"):
                with st.spinner("Training model..."):
                    models = Models(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test)
                    
                    # Train selected model
                    if model == "Logistic Regression":
                        models.LogisticRegression()
                    elif model == "Decision Tree":
                        models.DecisionTree()
                    elif model == "Linear SVC":
                        models.LinearSVC()
                    elif model == "SVC":
                        models.SVC()
                    elif model == "Multinomial Naive Bayes":
                        models.MultinomialNB()
                    elif model == "Random Forest":
                        models.RandomForestClassifier()
                    elif model == "Gaussian Naive Bayes":
                        models.GaussianNB()
                
                st.success("Model training completed!")
                st.info("You can now use the 'Predictions' section to classify new text.")

        except Exception as e:
            st.error(f"Error in model training: {str(e)}")
    else:
        st.warning("Please upload training data to train a model")

# Predictions Section
elif section == "Predictions":
    st.subheader("Perform Predictions on New Text")
    
    # Check if models exist
    if os.path.exists("models") and os.listdir("models"):
        # Text input for prediction
        text_input = st.text_area("Enter the text to classify:", height=100)
        
        # Model selection
        available_models = [f for f in os.listdir("models") if f.endswith('.pkl')]
        
        if available_models:
            selected_model = st.selectbox("Choose the trained model:", available_models)
            
            # Prediction button
            if st.button("Predict", key="single_predict"):
                if text_input.strip():
                    with st.spinner("Making prediction..."):
                        predicted_label, prediction_proba = predict_text(
                            selected_model, 
                            text_input, 
                            st.session_state.get('vectorizer_type', 'tfidf')
                        )
                        
                        if predicted_label is not None:
                            st.success("Prediction completed!")
                            
                            # Display results
                            st.markdown("### Prediction Results")
                            st.markdown(f"**Input Text:** {text_input}")
                            st.markdown(f"**Predicted Class:** {predicted_label}")
                            
                            # Display probabilities if available
                            if prediction_proba is not None:
                                st.markdown("**Class Probabilities:**")
                                
                                # Load encoder to get class names
                                encoder = load_artifacts("artifacts", "encoder.pkl")
                                if encoder is not None:
                                    classes = encoder.classes_
                                    prob_df = pd.DataFrame({
                                        'Class': classes,
                                        'Probability': prediction_proba
                                    }).sort_values('Probability', ascending=False)
                                    
                                    st.bar_chart(prob_df.set_index('Class'))
                                    st.dataframe(prob_df)
                else:
                    st.warning("Please enter some text to classify")
        else:
            st.warning("No trained models found. Please train a model first.")
    else:
        st.warning("No trained models found. Please go to 'Train Model' section to train a model first.")
        
    # Option to classify multiple texts
    st.markdown("---")
    st.subheader("Batch Predictions")
    
    uploaded_file = st.file_uploader("Upload a CSV file with text to classify", type=['csv'])
    
    if uploaded_file is not None:
        try:
            batch_df = pd.read_csv(uploaded_file, encoding='latin1')
            st.write("Uploaded data preview:")
            st.write(batch_df.head())
            
            # Select text column
            text_column = st.selectbox("Select the text column:", batch_df.columns.tolist())
            
            if os.path.exists("models") and os.listdir("models"):
                available_models = [f for f in os.listdir("models") if f.endswith('.pkl')]
                batch_model = st.selectbox("Choose model for batch prediction:", available_models, key="batch_model")
                
                if st.button("Run Batch Predictions", key="batch_predict"):
                    with st.spinner("Processing batch predictions..."):
                        predictions = []
                        
                        for text in batch_df[text_column]:
                            pred, _ = predict_text(
                                batch_model, 
                                str(text), 
                                st.session_state.get('vectorizer_type', 'tfidf')
                            )
                            predictions.append(pred if pred is not None else "Error")
                        
                        batch_df['Predicted_Class'] = predictions
                        
                        st.success("Batch predictions completed!")
                        st.write("Results:")
                        st.write(batch_df[[text_column, 'Predicted_Class']])
                        
                        # Download results
                        csv = batch_df.to_csv(index=False)
                        st.download_button(
                            label="Download predictions as CSV",
                            data=csv,
                            file_name="batch_predictions.csv",
                            mime="text/csv"
                        )
        except Exception as e:
            st.error(f"Error in batch prediction: {str(e)}")