File size: 15,312 Bytes
0d6cb9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

import modal
import textwrap

# Volume that already contains:
#   sam-3d-objects/checkpoints/pipeline.yaml
#   AND will now cache DINOv2 / other model weights
volume = modal.Volume.from_name("sam3d-weights", create_if_missing=False)

# ---------------------------------------------------------------------------
# Image build: CUDA base + PyTorch + PyTorch3D + SAM-3D repo + deps
# ---------------------------------------------------------------------------
sam3d_image = (
    modal.Image.from_registry(
        "nvidia/cuda:12.4.1-devel-ubuntu22.04",
        add_python="3.11",  # Python 3.11
    )
    .apt_install(
        "git",
        "g++",
        "gcc",
        "clang",
        "build-essential",
        "libgl1-mesa-glx",
        "libglib2.0-0",
        "libopenexr-dev",
        "wget",
    )

    # STEP 1: Install PyTorch CUDA 12.4 stack (hard fail if broken)
    .pip_install(
        "torch==2.5.1",
        "torchvision",
        "torchaudio",
        index_url="https://download.pytorch.org/whl/cu124",
    )

    # STEP 1.5: Build deps (needed for PyTorch3D / SAM-3D)
    .pip_install(
        "fvcore",
        "iopath",
        "numpy",
        "ninja",
        "setuptools",
        "wheel",
    )

    # STEP 2: Clone the SAM-3D Objects repo
    .run_commands(
        "echo '[STEP 2] Cloning facebookresearch/sam-3d-objects' && "
        "git clone https://github.com/facebookresearch/sam-3d-objects.git /sam3d"
    )

    # STEP 2.1: Remove nvidia-pyindex from pyproject so pip doesn't try to build it
    .run_commands(
        "echo '[STEP 2.1] Removing nvidia-pyindex from pyproject.toml (if present)' && "
        "cd /sam3d && "
        "if [ -f pyproject.toml ]; then "
        "  sed -i '/nvidia-pyindex/d' pyproject.toml; "
        "fi"
    )

    # STEP 3: Install [p3d] extras (PyTorch3D-related deps), fail-soft
    .run_commands(
        "echo '[STEP 3] Installing sam-3d-objects extra [p3d]' && "
        "cd /sam3d && "
        "PIP_EXTRA_INDEX_URL='https://pypi.ngc.nvidia.com https://download.pytorch.org/whl/cu124' "
        "pip install -e '.[p3d]' "
        "|| echo '[WARN] [p3d] extras failed to install, continuing without them.'"
    )

    # STEP 4: Install [inference] extras (Kaolin etc.), fail-soft
    .run_commands(
        "echo '[STEP 4] Installing sam-3d-objects extra [inference] (includes Kaolin etc.)' && "
        "cd /sam3d && "
        "PIP_FIND_LINKS='https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.5.1_cu121.html' "
        "pip install -e '.[inference]' "
        "|| echo '[WARN] [inference] extras failed to install, continuing without them.'"
    )

    # STEP 5: Helper libs (open3d, trimesh, seaborn) – fail-soft
    .run_commands(
        "echo '[STEP 5] Installing helper libraries: open3d, trimesh, seaborn' && "
        "pip install open3d trimesh seaborn "
        "|| echo '[WARN] Helper libs (open3d/trimesh/seaborn) failed to install, continuing.'"
    )

    # STEP 5.5: Config libs required by inference.py (omegaconf, hydra-core)
    .run_commands(
        "echo '[STEP 5.5] Installing config libraries: omegaconf, hydra-core' && "
        "pip install omegaconf hydra-core "
        "|| echo '[WARN] omegaconf/hydra-core failed to install, continuing.'"
    )

    # STEP 5.6: Install utils3d explicitly (inference.py imports this)
    .run_commands(
        "echo '[STEP 5.6] Installing utils3d' && "
        "pip install "
        "'git+https://github.com/EasternJournalist/utils3d.git@3913c65d81e05e47b9f367250cf8c0f7462a0900' "
        "|| echo '[WARN] utils3d failed to install, continuing.'"
    )

    # STEP 5.7: Installing gradio (inference.py imports this)
    .run_commands(
        "echo '[STEP 5.7] Installing gradio' && "
        "pip install gradio "
        "|| echo '[WARN] gradio failed to install, continuing.'"
    )

    .run_commands(
        "echo '[STEP 5.8] Installing kaolin from NVIDIA index' && "
        "pip install kaolin "
        "-f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.5.1_cu121.html "
        "|| echo '[WARN] kaolin install failed, continuing.'"
    )

    # STEP 5.9: Install loguru (needed by inference_pipeline_pointmap)
    .run_commands(
        "echo '[STEP 5.9] Installing loguru' && "
        "pip install loguru "
        "|| echo '[WARN] loguru failed to install, continuing.'"
    )

    # STEP 5.91: Install timm (vision transformer lib)
    .run_commands(
        "echo '[STEP 5.91] Installing timm' && "
        "pip install timm "
        "|| echo '[WARN] timm failed to install, continuing.'"
    )

    # STEP 5.8: Install PyTorch3D from GitHub @stable, using the pattern that worked for you
    .run_commands(
        "echo '[STEP 5.92] Installing PyTorch3D from GitHub @stable (no build isolation, no deps)' && "
        "python -c 'import pytorch3d' 2>/dev/null && "
        "echo 'PyTorch3D already installed, skipping...' || ( "
        "export FORCE_CUDA=1 && "
        "export TORCH_CUDA_ARCH_LIST='8.0;8.6;8.9;9.0' && "
        "pip install --no-build-isolation --no-deps "
        "\"git+https://github.com/facebookresearch/pytorch3d.git@stable\" "
        ")"
    )

    .run_commands(
    "cd /sam3d && pip install '.[dev]' --no-deps"
    )

    .run_commands("pip install optree")
    .run_commands("pip install astor==0.8.1")
    .run_commands("pip install opencv-python")
    .run_commands("pip install lightning")
    .run_commands("pip install spconv-cu121==2.3.8")
    .run_commands("pip install psutil && pip install --no-build-isolation flash_attn==2.8.3 || echo '[WARN] flash_attn failed'")
    .run_commands("pip install xatlas==0.0.9")
    .run_commands("pip install pyvista")
    .run_commands("pip install pymeshfix==0.17.0")
    .run_commands("pip install igraph")
    .run_commands("pip install easydict")
    .run_commands("pip install igraph")
    .run_commands(
    "export TORCH_CUDA_ARCH_LIST='8.0;8.6;8.9;9.0' && "
    "pip install --no-build-isolation 'git+https://github.com/nerfstudio-project/gsplat.git@2323de5905d5e90e035f792fe65bad0fedd413e7'"
    )
    .run_commands("pip install igraph")
    .run_commands("pip install 'git+https://github.com/microsoft/MoGe.git@a8c37341bc0325ca99b9d57981cc3bb2bd3e255b'")
    .run_commands("pip install imageio")
    # STEP 6: Patch hydra – skip if it fails
    .run_commands(
        "echo '[STEP 6] Patching hydra' && "
        "cd /sam3d && "
        "./patching/hydra "
        "|| echo '[WARN] Hydra patch failed, continuing without patch.'"
    )
)

app = modal.App("sam3d-objects-inference", image=sam3d_image)

# ---------------------------------------------------------------------------
# Runtime helper: minimal pytorch3d stub so SAM-3D imports work (fallback)
@app.cls(

    image=sam3d_image,

    gpu="A10G",

    timeout=600,

    volumes={"/weights": volume},

    scaledown_window=300,  # renamed from container_idle_timeout

    enable_memory_snapshot=True,  # required for snap=True

)
class SAM3DModel:
    
    @modal.enter(snap=True)
    def setup(self):
        """Model loads once when container starts. snap=True caches the loaded state."""
        import os
        import sys
        import math
        import types
        import torch

        # Cache setup
        CACHE_DIR = "/weights/model_cache"
        os.makedirs(CACHE_DIR, exist_ok=True)
        os.environ["TORCH_HOME"] = CACHE_DIR
        os.environ["TORCH_HUB"] = os.path.join(CACHE_DIR, "hub")
        os.environ["HF_HOME"] = os.path.join(CACHE_DIR, "huggingface")
        os.environ["TRANSFORMERS_CACHE"] = os.path.join(CACHE_DIR, "huggingface")
        os.environ["XDG_CACHE_HOME"] = CACHE_DIR
        os.environ["TIMM_CACHE"] = os.path.join(CACHE_DIR, "timm")
        os.environ.setdefault("CUDA_HOME", "/usr/local/cuda")
        os.environ.setdefault("CONDA_PREFIX", "/usr/local/cuda")

        # pytorch3d stub
        try:
            import pytorch3d
        except Exception:
            pkg = types.ModuleType("pytorch3d")
            transforms_mod = types.ModuleType("pytorch3d.transforms")
            renderer_mod = types.ModuleType("pytorch3d.renderer")
            def _quat_conj(q):
                w, x, y, z = q.unbind(-1)
                return torch.stack((w, -x, -y, -z), dim=-1)
            def quaternion_multiply(q1, q2):
                w1, x1, y1, z1 = q1.unbind(-1)
                w2, x2, y2, z2 = q2.unbind(-1)
                return torch.stack([w1*w2-x1*x2-y1*y2-z1*z2, w1*x2+x1*w2+y1*z2-z1*y2,
                                    w1*y2-x1*z2+y1*w2+z1*x2, w1*z2+x1*y2-y1*x2+z1*w2], dim=-1)
            def quaternion_invert(q):
                return _quat_conj(q) / (q.norm(dim=-1, keepdim=True) ** 2 + 1e-8)
            transforms_mod.quaternion_multiply = quaternion_multiply
            transforms_mod.quaternion_invert = quaternion_invert
            class Transform3d:
                def __init__(self, matrix=None, device=None):
                    self.matrix = torch.eye(4, device=device).unsqueeze(0) if matrix is None else matrix
                def compose(self, other):
                    return Transform3d(other.matrix @ self.matrix)
                def transform_points(self, points):
                    if points.dim() == 2:
                        pts = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1)
                        return (self.matrix[0] @ pts.T).T[..., :3]
                    elif points.dim() == 3:
                        B, N, _ = points.shape
                        pts = torch.cat([points, torch.ones(B, N, 1, device=points.device)], dim=-1)
                        mat = self.matrix.expand(B, -1, -1) if self.matrix.shape[0] == 1 and B > 1 else self.matrix
                        return torch.bmm(mat, pts.transpose(1, 2)).transpose(1, 2)[..., :3]
            transforms_mod.Transform3d = Transform3d
            def look_at_view_transform(dist=1.0, elev=0.0, azim=0.0, device=None):
                dist_t = torch.tensor([dist], device=device, dtype=torch.float32)
                elev_rad = torch.tensor([elev], device=device) * math.pi / 180.0
                azim_rad = torch.tensor([azim], device=device) * math.pi / 180.0
                x = dist_t * torch.cos(elev_rad) * torch.sin(azim_rad)
                y = dist_t * torch.sin(elev_rad)
                z = dist_t * torch.cos(elev_rad) * torch.cos(azim_rad)
                cam_pos = torch.stack([x, y, z], dim=-1)
                up = torch.tensor([[0.0, 1.0, 0.0]], device=device)
                z_axis = torch.nn.functional.normalize(cam_pos, dim=-1)
                x_axis = torch.nn.functional.normalize(torch.cross(up, z_axis, dim=-1), dim=-1)
                y_axis = torch.cross(z_axis, x_axis, dim=-1)
                R = torch.stack([x_axis, y_axis, z_axis], dim=-1)
                T = -torch.bmm(R, cam_pos.unsqueeze(-1)).squeeze(-1)
                return R, T
            renderer_mod.look_at_view_transform = look_at_view_transform
            pkg.transforms = transforms_mod
            pkg.renderer = renderer_mod
            sys.modules["pytorch3d"] = pkg
            sys.modules["pytorch3d.transforms"] = transforms_mod
            sys.modules["pytorch3d.renderer"] = renderer_mod

        sys.path.insert(0, "/sam3d")
        sys.path.insert(0, "/sam3d/notebook")
        from inference import Inference, load_image
        self.load_image = load_image
        self.model = Inference("/weights/sam-3d-objects/checkpoints/pipeline.yaml", compile=False)
        print("[SETUP] Model loaded!")

    @modal.method()
    def reconstruct(self, image_bytes: bytes, mask_bytes: bytes = None) -> tuple[bytes, bytes]:
        import os, io, tempfile, shutil
        import numpy as np
        from PIL import Image
        import torch

        temp_dir = tempfile.mkdtemp()
        image_path = os.path.join(temp_dir, "image.png")
        mask_path = os.path.join(temp_dir, "mask.png")
        with open(image_path, 'wb') as f:
            f.write(image_bytes)

        pil_image = Image.open(image_path)
        if mask_bytes is not None:
            with open(mask_path, 'wb') as f:
                f.write(mask_bytes)
            mask = np.array(Image.open(mask_path).convert('L'))
        elif pil_image.mode == 'RGBA':
            alpha = np.array(pil_image)[:, :, 3]
            mask = (alpha > 128).astype(np.uint8) * 255
            pil_image = pil_image.convert('RGB')
            pil_image.save(image_path)
        else:
            raise ValueError("Provide either: 1) separate mask_bytes, or 2) RGBA image with alpha mask")

        if np.sum(mask > 0) < 100:
            raise ValueError("Mask too small!")

        image = self.load_image(image_path)
        if mask.shape[0] != image.shape[0] or mask.shape[1] != image.shape[1]:
            mask = np.array(Image.fromarray(mask).resize((image.shape[1], image.shape[0]), Image.NEAREST))

        with torch.inference_mode():
            output = self.model(image, mask, seed=42)

        shutil.rmtree(temp_dir, ignore_errors=True)

        ply_buffer = io.BytesIO()
        output["gs"].save_ply(ply_buffer)

        glb_bytes = None
        if "mesh" in output and output["mesh"]:
            import trimesh
            mesh = output["mesh"][0] if isinstance(output["mesh"], list) else output["mesh"]
            glb_bytes = trimesh.Trimesh(
                vertices=mesh.vertices.cpu().numpy(),
                faces=mesh.faces.cpu().numpy()
            ).export(file_type="glb")

        return ply_buffer.getvalue(), glb_bytes


@app.local_entrypoint()
def main(

    input_path: str = "sam3d_1.png",

    mask_path: str = "sam3d_1gray.png",

    output_path: str = "output_model.ply",

):
    """

    Local test:

      # With RGBA image (mask in alpha):

      modal run modal_sam3d.py --input-path image_rgba.png

      

      # With separate mask file (official pattern):

      modal run modal_sam3d.py --input-path image.png --mask-path mask.png

    """
    from pathlib import Path

    input_file = Path(input_path)
    if not input_file.exists():
        print(f"[LOCAL] ERROR: Input image not found: {input_file.resolve()}")
        return

    mask_bytes = None
    if mask_path:
        mask_file = Path(mask_path)
        if mask_file.exists():
            mask_bytes = mask_file.read_bytes()
            print(f"[LOCAL] Using separate mask file: {mask_file}")
        else:
            print(f"[LOCAL] WARNING: Mask file not found: {mask_file}")

    print(f"[LOCAL] Sending {input_file} to SAM-3D on Modal...")
    model = SAM3DModel()
    ply_bytes, glb_bytes = model.reconstruct.remote(input_file.read_bytes(), mask_bytes)

    output_file = Path(output_path)
    output_file.write_bytes(ply_bytes)
    if glb_bytes:
        glb_file = Path(output_path).with_suffix(".glb")
        glb_file.write_bytes(glb_bytes)
        print(f"[LOCAL] Saved mesh to: {glb_file}")
    print(f"[LOCAL] Saved 3D model to: {output_file.resolve()} ({len(ply_bytes)} bytes)")