|
|
import os |
|
|
import gradio as gr |
|
|
import requests |
|
|
import inspect |
|
|
import pandas as pd |
|
|
from transformers import pipeline |
|
|
from urllib.parse import quote_plus |
|
|
import re |
|
|
from typing import List, Dict, Any |
|
|
from pptx import Presentation |
|
|
from PyPDF2 import PdfReader |
|
|
import openai |
|
|
|
|
|
|
|
|
current_question = "" |
|
|
current_answer = "" |
|
|
current_context = "" |
|
|
|
|
|
def get_status(): |
|
|
return current_question, current_answer, current_context |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
|
def openai_gpt4o_generator(prompt: str, max_new_tokens: int = 128): |
|
|
"""Generate text using OpenAI GPT-4o via the API.""" |
|
|
api_key = os.getenv("OPENAI_API_KEY") |
|
|
if not api_key: |
|
|
raise ValueError("OPENAI_API_KEY environment variable is not set") |
|
|
client = openai.OpenAI(api_key=api_key) |
|
|
response = client.chat.completions.create( |
|
|
model="gpt-4o", |
|
|
messages=[{"role": "user", "content": prompt}], |
|
|
max_tokens=max_new_tokens, |
|
|
) |
|
|
text = response.choices[0].message.content |
|
|
return [{"generated_text": text}] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BasicAgent: |
|
|
SYSTEM_PROMPT = ( |
|
|
"You are a general AI assistant. I will ask you a question." |
|
|
"Report your thoughts, and finish your final answer with the following template: " |
|
|
"FINAL ANSWER: {Answer}" |
|
|
"YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. " |
|
|
"If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. " |
|
|
"If you are asked for a string, don't use articles, neither abbreviations, and write the digits in plain text unless specified otherwise. " |
|
|
"If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string." |
|
|
"Always end your output exactly with FINAL ANSWER: <Answer> and do not add any text after that." |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self): |
|
|
"""Инициализация агента, использующего только OpenAI GPT-4o.""" |
|
|
self.generator = openai_gpt4o_generator |
|
|
self.memory: List[str] = [] |
|
|
|
|
|
|
|
|
|
|
|
def get_context(self) -> str: |
|
|
"""Return the agent's current reasoning context.""" |
|
|
return "\n".join(self.memory) |
|
|
|
|
|
def _plan(self, question: str) -> List[Dict[str, Any]]: |
|
|
"""Create a simple plan consisting of tool steps.""" |
|
|
steps: List[Dict[str, Any]] = [] |
|
|
|
|
|
file_match = re.search(r"(\S+\.(?:pdf|xlsx|csv|pptx|txt))", question, re.IGNORECASE) |
|
|
if file_match: |
|
|
steps.append({"tool": "file", "path": file_match.group(1)}) |
|
|
return steps |
|
|
|
|
|
expr_match = re.search(r"[\d\s\+\-\*/\.\(\)]+", question) |
|
|
has_op = any(op in question for op in ["+", "-", "*", "/"]) |
|
|
|
|
|
if expr_match and has_op: |
|
|
expression = expr_match.group(0) |
|
|
|
|
|
if re.search(r"\b(search|lookup|population|when|who|what)\b", question.lower()): |
|
|
steps.append({"tool": "web", "query": question}) |
|
|
steps.append({"tool": "calculator", "expression": expression}) |
|
|
return steps |
|
|
|
|
|
|
|
|
steps.append({"tool": "web", "query": question}) |
|
|
return steps |
|
|
|
|
|
def _web_search(self, query: str) -> str: |
|
|
url = f"https://r.jina.ai/https://duckduckgo.com/html/?q={quote_plus(query)}" |
|
|
try: |
|
|
resp = requests.get(url, timeout=10) |
|
|
text = resp.text |
|
|
for line in text.splitlines(): |
|
|
if line.startswith("[") and "](" in line: |
|
|
return line |
|
|
return "No result found" |
|
|
except Exception as e: |
|
|
return f"web search error: {e}" |
|
|
|
|
|
def _execute_calculator(self, expression: str) -> str: |
|
|
try: |
|
|
result = eval(expression, {"__builtins__": {}}, {}) |
|
|
return str(result) |
|
|
except Exception as e: |
|
|
return f"calc error: {e}" |
|
|
|
|
|
def _load_file(self, path: str) -> str: |
|
|
try: |
|
|
ext = os.path.splitext(path)[1].lower() |
|
|
if ext == ".pdf": |
|
|
reader = PdfReader(path) |
|
|
return "\n".join(page.extract_text() for page in reader.pages[:3]) |
|
|
if ext in {".xlsx", ".xls"}: |
|
|
df = pd.read_excel(path) |
|
|
return df.to_csv(index=False) |
|
|
if ext == ".csv": |
|
|
df = pd.read_csv(path) |
|
|
return df.to_csv(index=False) |
|
|
if ext == ".pptx": |
|
|
prs = Presentation(path) |
|
|
texts = [] |
|
|
for slide in prs.slides: |
|
|
for shape in slide.shapes: |
|
|
if hasattr(shape, "text"): |
|
|
texts.append(shape.text) |
|
|
return "\n".join(texts) |
|
|
if ext == ".txt": |
|
|
with open(path, "r", encoding="utf-8") as f: |
|
|
return f.read() |
|
|
except Exception as e: |
|
|
return f"file load error: {e}" |
|
|
return "unsupported file" |
|
|
|
|
|
def __call__(self, question: str) -> str: |
|
|
|
|
|
self.memory.clear() |
|
|
self.memory.append(f"Question: {question}") |
|
|
plan = self._plan(question) |
|
|
self.memory.append(f"Plan: {plan}") |
|
|
|
|
|
for step in plan: |
|
|
action = step.get("tool") |
|
|
self.memory.append(f"Act: {action} -> {step}") |
|
|
if action == "calculator": |
|
|
observation = self._execute_calculator(step["expression"]) |
|
|
elif action == "file": |
|
|
observation = self._load_file(step["path"]) |
|
|
else: |
|
|
observation = self._web_search(step["query"]) |
|
|
self.memory.append(f"Observation: {observation}") |
|
|
|
|
|
context = "\n".join(self.memory) |
|
|
|
|
|
prompt = f"{self.SYSTEM_PROMPT}\nQuestion: {question}\nAnswer:" |
|
|
|
|
|
|
|
|
try: |
|
|
outputs = self.generator(prompt, max_new_tokens=128) |
|
|
except Exception as e: |
|
|
raise RuntimeError(f"generation failed: {e}") from e |
|
|
|
|
|
if outputs and isinstance(outputs, list): |
|
|
generated_text = outputs[0].get("generated_text", "") |
|
|
else: |
|
|
generated_text = str(outputs) |
|
|
|
|
|
if generated_text.startswith(prompt): |
|
|
generated_text = generated_text[len(prompt):].lstrip() |
|
|
|
|
|
if "FINAL ANSWER:" in generated_text: |
|
|
return generated_text.split("FINAL ANSWER:", 1)[1].strip() |
|
|
return generated_text.strip() |
|
|
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
|
""" |
|
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
|
and displays the results. |
|
|
""" |
|
|
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
|
|
if profile: |
|
|
username= f"{profile.username}" |
|
|
print(f"User logged in: {username}") |
|
|
else: |
|
|
print("User not logged in.") |
|
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
|
|
api_url = DEFAULT_API_URL |
|
|
questions_url = f"{api_url}/questions" |
|
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
|
|
|
global current_question, current_answer, current_context |
|
|
current_question = "" |
|
|
current_answer = "" |
|
|
current_context = "" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
agent = BasicAgent() |
|
|
except Exception as e: |
|
|
print(f"Error instantiating agent: {e}") |
|
|
return f"Error initializing agent: {e}", None |
|
|
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
|
print(agent_code) |
|
|
|
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
|
try: |
|
|
response = requests.get(questions_url, timeout=15) |
|
|
response.raise_for_status() |
|
|
questions_data = response.json() |
|
|
if not questions_data: |
|
|
print("Fetched questions list is empty.") |
|
|
return "Fetched questions list is empty or invalid format.", None |
|
|
print(f"Fetched {len(questions_data)} questions.") |
|
|
except requests.exceptions.RequestException as e: |
|
|
print(f"Error fetching questions: {e}") |
|
|
return f"Error fetching questions: {e}", None |
|
|
except requests.exceptions.JSONDecodeError as e: |
|
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
|
print(f"Response text: {response.text[:500]}") |
|
|
return f"Error decoding server response for questions: {e}", None |
|
|
except Exception as e: |
|
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
|
|
|
results_log = [] |
|
|
answers_payload = [] |
|
|
print(f"Running agent on {len(questions_data)} questions...") |
|
|
for item in questions_data: |
|
|
task_id = item.get("task_id") |
|
|
question_text = item.get("question") |
|
|
|
|
|
current_question = question_text |
|
|
current_answer = "" |
|
|
|
|
|
if not task_id or question_text is None: |
|
|
print(f"Skipping item with missing task_id or question: {item}") |
|
|
continue |
|
|
try: |
|
|
submitted_answer = agent(question_text) |
|
|
|
|
|
question_context = agent.get_context() |
|
|
if current_context: |
|
|
current_context += "\n\n" |
|
|
current_context += f"Question {task_id}: {question_text}\n{question_context}" |
|
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
|
|
|
|
current_answer = submitted_answer |
|
|
|
|
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
|
except Exception as e: |
|
|
print(f"Error running agent on task {task_id}: {e}") |
|
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
|
|
current_answer = f"AGENT ERROR: {e}" |
|
|
|
|
|
if not answers_payload: |
|
|
print("Agent did not produce any answers to submit.") |
|
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
|
print(status_update) |
|
|
|
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
|
try: |
|
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
|
response.raise_for_status() |
|
|
result_data = response.json() |
|
|
final_status = ( |
|
|
f"Submission Successful!\n" |
|
|
f"User: {result_data.get('username')}\n" |
|
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
|
) |
|
|
print("Submission successful.") |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return final_status, results_df |
|
|
except requests.exceptions.HTTPError as e: |
|
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
|
try: |
|
|
error_json = e.response.json() |
|
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
|
except requests.exceptions.JSONDecodeError: |
|
|
error_detail += f" Response: {e.response.text[:500]}" |
|
|
status_message = f"Submission Failed: {error_detail}" |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
except requests.exceptions.Timeout: |
|
|
status_message = "Submission Failed: The request timed out." |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
except requests.exceptions.RequestException as e: |
|
|
status_message = f"Submission Failed: Network error - {e}" |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
except Exception as e: |
|
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
|
gr.Markdown( |
|
|
""" |
|
|
**Instructions:** |
|
|
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
|
|
--- |
|
|
**Disclaimers:** |
|
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
|
""" |
|
|
) |
|
|
|
|
|
gr.LoginButton() |
|
|
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
|
|
current_question_box = gr.Textbox(label="Current Question") |
|
|
current_answer_box = gr.Textbox(label="Current Answer") |
|
|
context_box = gr.Textbox(label="Current Context") |
|
|
|
|
|
run_button.click( |
|
|
fn=run_and_submit_all, |
|
|
outputs=[status_output, results_table] |
|
|
) |
|
|
|
|
|
status_timer = gr.Timer(1.0) |
|
|
status_timer.tick(fn=get_status, outputs=[current_question_box, current_answer_box, context_box]) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
|
|
if space_host_startup: |
|
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
|
else: |
|
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
|
|
if space_id_startup: |
|
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
|
else: |
|
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
|
demo.launch(debug=True, share=False) |