Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,334 +1,209 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
-
import datetime
|
| 4 |
-
import requests
|
| 5 |
-
from email.utils import parseaddr
|
| 6 |
-
|
| 7 |
import gradio as gr
|
|
|
|
| 8 |
import pandas as pd
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
from datasets import load_dataset, VerificationMode
|
| 12 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
| 13 |
-
from huggingface_hub import HfApi
|
| 14 |
-
|
| 15 |
-
# InfoStrings
|
| 16 |
-
from scorer import question_scorer
|
| 17 |
-
from content import format_error, format_warning, format_log, TITLE, INTRODUCTION_TEXT, SUBMISSION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, model_hyperlink
|
| 18 |
|
| 19 |
-
TOKEN = os.environ.get("TOKEN", None)
|
| 20 |
|
| 21 |
-
OWNER="gaia-benchmark"
|
| 22 |
-
DATA_DATASET = f"{OWNER}/GAIA"
|
| 23 |
-
INTERNAL_DATA_DATASET = f"{OWNER}/GAIA_internal"
|
| 24 |
-
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
|
| 25 |
-
SUBMISSION_DATASET_PUBLIC = f"{OWNER}/submissions_public"
|
| 26 |
-
CONTACT_DATASET = f"{OWNER}/contact_info"
|
| 27 |
-
RESULTS_DATASET = f"{OWNER}/results_public"
|
| 28 |
-
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
|
| 29 |
-
api = HfApi()
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
|
|
|
| 36 |
|
| 37 |
-
# Should be False on spaces and True outside
|
| 38 |
-
LOCAL_DEBUG = False #os.environ.get("system", "") != "spaces"
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])})
|
| 46 |
-
local_df = local_df.remove_columns(["system_prompt", "url"])
|
| 47 |
-
local_df = local_df.rename_column("model", "Agent name")
|
| 48 |
-
local_df = local_df.rename_column("model_family", "Model family")
|
| 49 |
-
local_df = local_df.rename_column("score", "Average score (%)")
|
| 50 |
-
for i in [1, 2, 3]:
|
| 51 |
-
local_df = local_df.rename_column(f"score_level{i}", f"Level {i} score (%)")
|
| 52 |
-
local_df = local_df.rename_column("date", "Submission date")
|
| 53 |
-
df = pd.DataFrame(local_df)
|
| 54 |
-
df = df.sort_values(by=["Average score (%)"], ascending=False)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
-
return df
|
| 61 |
|
| 62 |
-
#eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="validation")
|
| 63 |
-
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
def add_new_eval(
|
| 77 |
-
#val_or_test: str,
|
| 78 |
-
model: str,
|
| 79 |
-
model_family: str,
|
| 80 |
-
system_prompt: str,
|
| 81 |
-
url: str,
|
| 82 |
-
path_to_file: str,
|
| 83 |
-
organisation: str,
|
| 84 |
-
mail: str,
|
| 85 |
-
profile: gr.OAuthProfile,
|
| 86 |
-
):
|
| 87 |
-
val_or_test = "test"
|
| 88 |
try:
|
| 89 |
-
|
| 90 |
-
user_data = requests.get(f"https://huggingface.co/api/users/{profile.username}/overview")
|
| 91 |
-
creation_date = json.loads(user_data.content)["createdAt"]
|
| 92 |
-
if datetime.datetime.now() - datetime.datetime.strptime(creation_date, '%Y-%m-%dT%H:%M:%S.%fZ') < datetime.timedelta(days=60):
|
| 93 |
-
return format_error("This account is not authorized to submit on GAIA.")
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
|
| 97 |
-
user_submission_dates = sorted(row["date"] for row in contact_infos[val_or_test] if row["username"] == profile.username)
|
| 98 |
-
if len(user_submission_dates) > 0 and user_submission_dates[-1] == datetime.datetime.today().strftime('%Y-%m-%d'):
|
| 99 |
-
return format_error("You already submitted once today, please try again tomorrow.")
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
is_validation = val_or_test == "validation"
|
| 103 |
-
# Very basic email parsing
|
| 104 |
-
_, parsed_mail = parseaddr(mail)
|
| 105 |
-
if not "@" in parsed_mail:
|
| 106 |
-
return format_warning("Please provide a valid email adress.")
|
| 107 |
-
|
| 108 |
-
print("Adding new eval")
|
| 109 |
-
|
| 110 |
-
# Check if the combination model/org already exists and prints a warning message if yes
|
| 111 |
-
if model.lower() in set([m.lower() for m in eval_results[val_or_test]["model"]]) and organisation.lower() in set([o.lower() for o in eval_results[val_or_test]["organisation"]]):
|
| 112 |
-
return format_warning("This model has been already submitted.")
|
| 113 |
-
|
| 114 |
-
if path_to_file is None:
|
| 115 |
-
return format_warning("Please attach a file.")
|
| 116 |
-
|
| 117 |
-
# SAVE UNSCORED SUBMISSION
|
| 118 |
-
if LOCAL_DEBUG:
|
| 119 |
-
print("mock uploaded submission")
|
| 120 |
-
else:
|
| 121 |
-
api.upload_file(
|
| 122 |
-
repo_id=SUBMISSION_DATASET,
|
| 123 |
-
path_or_fileobj=path_to_file.name,
|
| 124 |
-
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_raw_{datetime.datetime.today()}.jsonl",
|
| 125 |
-
repo_type="dataset",
|
| 126 |
-
token=TOKEN
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
# SAVE CONTACT
|
| 130 |
-
contact_info = {
|
| 131 |
-
"model": model,
|
| 132 |
-
"model_family": model_family,
|
| 133 |
-
"url": url,
|
| 134 |
-
"organisation": organisation,
|
| 135 |
-
"username": profile.username,
|
| 136 |
-
"mail": mail,
|
| 137 |
-
"date": datetime.datetime.today().strftime('%Y-%m-%d')
|
| 138 |
-
}
|
| 139 |
-
contact_infos[val_or_test]= contact_infos[val_or_test].add_item(contact_info)
|
| 140 |
-
if LOCAL_DEBUG:
|
| 141 |
-
print("mock uploaded contact info")
|
| 142 |
-
else:
|
| 143 |
-
contact_infos.push_to_hub(CONTACT_DATASET, config_name = YEAR_VERSION, token=TOKEN)
|
| 144 |
-
|
| 145 |
-
# SCORE SUBMISSION
|
| 146 |
-
file_path = path_to_file.name
|
| 147 |
-
scores = {"all": 0, 1: 0, 2: 0, 3: 0}
|
| 148 |
-
num_questions = {"all": 0, 1: 0, 2: 0, 3: 0}
|
| 149 |
-
task_ids = []
|
| 150 |
-
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
|
| 151 |
-
with open(file_path, 'r') as f:
|
| 152 |
-
for ix, line in enumerate(f):
|
| 153 |
-
try:
|
| 154 |
-
task = json.loads(line)
|
| 155 |
-
except Exception:
|
| 156 |
-
return format_error(f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file.")
|
| 157 |
-
|
| 158 |
-
if "model_answer" not in task:
|
| 159 |
-
return format_error(f"Line {ix} contains no model_answer key. Please fix it and resubmit your file.")
|
| 160 |
-
answer = task["model_answer"]
|
| 161 |
-
task_id = task["task_id"]
|
| 162 |
-
try:
|
| 163 |
-
level = int(gold_results[val_or_test][task_id]["Level"])
|
| 164 |
-
except KeyError:
|
| 165 |
-
return format_error(f"{task_id} not found in split {val_or_test}. Are you sure you submitted the correct file?")
|
| 166 |
-
|
| 167 |
-
score = question_scorer(task['model_answer'], gold_results[val_or_test][task_id]["Final answer"])
|
| 168 |
-
|
| 169 |
-
scored_file.write(
|
| 170 |
-
json.dumps({
|
| 171 |
-
"id": task_id,
|
| 172 |
-
"model_answer": answer,
|
| 173 |
-
"score": score,
|
| 174 |
-
"level": level
|
| 175 |
-
}) + "\n"
|
| 176 |
-
)
|
| 177 |
-
task_ids.append(task_id)
|
| 178 |
-
|
| 179 |
-
scores["all"] += score
|
| 180 |
-
scores[level] += score
|
| 181 |
-
num_questions["all"] += 1
|
| 182 |
-
num_questions[level] += 1
|
| 183 |
-
|
| 184 |
-
# Check if there's any duplicate in the submission
|
| 185 |
-
if len(task_ids) != len(set(task_ids)):
|
| 186 |
-
return format_error("There are duplicates in your submission. Please check your file and resubmit it.")
|
| 187 |
-
|
| 188 |
-
if any([num_questions[level] != ref_level_len[val_or_test][level] for level in [1, 2, 3]]):
|
| 189 |
-
return format_error(f"Your submission has {num_questions[1]} questions for level 1, {num_questions[2]} for level 2, and {num_questions[3]} for level 3, but it should have {ref_level_len[val_or_test][1]}, {ref_level_len[val_or_test][2]}, and {ref_level_len[val_or_test][3]} respectively. Please check your submission.")
|
| 190 |
-
|
| 191 |
-
# SAVE SCORED SUBMISSION
|
| 192 |
-
if LOCAL_DEBUG:
|
| 193 |
-
print("mock uploaded scored submission")
|
| 194 |
-
else:
|
| 195 |
-
api.upload_file(
|
| 196 |
-
repo_id=SUBMISSION_DATASET,
|
| 197 |
-
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
|
| 198 |
-
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl",
|
| 199 |
-
repo_type="dataset",
|
| 200 |
-
token=TOKEN
|
| 201 |
-
)
|
| 202 |
-
|
| 203 |
-
# Save scored file
|
| 204 |
-
if is_validation:
|
| 205 |
-
api.upload_file(
|
| 206 |
-
repo_id=SUBMISSION_DATASET_PUBLIC,
|
| 207 |
-
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
|
| 208 |
-
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl",
|
| 209 |
-
repo_type="dataset",
|
| 210 |
-
token=TOKEN
|
| 211 |
-
)
|
| 212 |
-
|
| 213 |
-
# SAVE TO LEADERBOARD DATA
|
| 214 |
-
eval_entry = {
|
| 215 |
-
"model": model,
|
| 216 |
-
"model_family": model_family,
|
| 217 |
-
"system_prompt": system_prompt,
|
| 218 |
-
"url": url,
|
| 219 |
-
"organisation": organisation,
|
| 220 |
-
"score": scores["all"]/ref_scores_len[val_or_test],
|
| 221 |
-
"score_level1": scores[1]/num_questions[1],
|
| 222 |
-
"score_level2": scores[2]/num_questions[2],
|
| 223 |
-
"score_level3": scores[3]/num_questions[3],
|
| 224 |
-
"date": datetime.datetime.today().strftime('%Y-%m-%d')
|
| 225 |
-
}
|
| 226 |
-
if num_questions[1] + num_questions[2] + num_questions[3] != ref_scores_len[val_or_test]:
|
| 227 |
-
return format_error(f"Your submission has {len(scores['all'])} questions for the {val_or_test} set, but it should have {ref_scores_len[val_or_test]}. Please check your submission.")
|
| 228 |
-
# Catching spam submissions of 100%
|
| 229 |
-
if all((eval_entry[k] == 1 for k in ["score_level1", "score_level2", "score_level3"])):
|
| 230 |
-
return format_error(f"There was a problem with your submission. Please open a discussion.")
|
| 231 |
-
|
| 232 |
-
# Testing for duplicates - to see if we want to add something like it as it would allow people to try to see the content of other submissions
|
| 233 |
-
#eval_entry_no_date = {k: v for k, v in eval_entry if k != "date"}
|
| 234 |
-
#columns_no_date = [c for c in eval_results[val_or_test].column_names if c != "date"]
|
| 235 |
-
#if eval_entry_no_date in eval_results[val_or_test].select_columns(columns_no_date):
|
| 236 |
-
# return format_error(f"Your submission is an exact duplicate from an existing submission.")
|
| 237 |
-
|
| 238 |
-
eval_results[val_or_test] = eval_results[val_or_test].add_item(eval_entry)
|
| 239 |
-
print(eval_results)
|
| 240 |
-
if LOCAL_DEBUG:
|
| 241 |
-
print("mock uploaded results to lb")
|
| 242 |
-
else:
|
| 243 |
-
eval_results.push_to_hub(RESULTS_DATASET, config_name = YEAR_VERSION, token=TOKEN)
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
return format_log(f"Model {model} submitted by {organisation} successfully.\nPlease wait a few hours and refresh the leaderboard to see your score displayed.")
|
| 247 |
except Exception as e:
|
| 248 |
-
print(e)
|
| 249 |
-
return
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
#
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
-
|
| 264 |
-
with demo:
|
| 265 |
-
gr.HTML(TITLE)
|
| 266 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 267 |
|
| 268 |
-
|
| 269 |
-
with gr.Accordion("📙 Citation", open=False):
|
| 270 |
-
citation_button = gr.Textbox(
|
| 271 |
-
value=CITATION_BUTTON_TEXT,
|
| 272 |
-
label=CITATION_BUTTON_LABEL,
|
| 273 |
-
elem_id="citation-button",
|
| 274 |
-
) #.style(show_copy_button=True)
|
| 275 |
|
| 276 |
-
gr.
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
column_widths=["20%"]
|
| 280 |
-
)
|
| 281 |
-
#with gr.Tab("Results: Validation"):
|
| 282 |
-
# leaderboard_table_val = gr.components.Dataframe(
|
| 283 |
-
# value=eval_dataframe_val, datatype=TYPES, interactive=False,
|
| 284 |
-
# column_widths=["20%"]
|
| 285 |
-
# )
|
| 286 |
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
inputs=[],
|
| 291 |
-
outputs=[
|
| 292 |
-
#leaderboard_table_val,
|
| 293 |
-
leaderboard_table_test,
|
| 294 |
-
],
|
| 295 |
)
|
| 296 |
-
with gr.Accordion("Submit a new model for evaluation"):
|
| 297 |
-
with gr.Row():
|
| 298 |
-
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
|
| 299 |
-
with gr.Row():
|
| 300 |
-
with gr.Column():
|
| 301 |
-
#level_of_test = gr.Radio(["test"], value="test", label="Split")
|
| 302 |
-
model_name_textbox = gr.Textbox(label="Agent name")
|
| 303 |
-
model_family_textbox = gr.Textbox(label="Model family")
|
| 304 |
-
system_prompt_textbox = gr.Textbox(label="System prompt example")
|
| 305 |
-
url_textbox = gr.Textbox(label="Url to model information")
|
| 306 |
-
with gr.Column():
|
| 307 |
-
organisation = gr.Textbox(label="Organisation")
|
| 308 |
-
mail = gr.Textbox(label="Contact email (will be stored privately, & used if there is an issue with your submission)")
|
| 309 |
-
file_output = gr.File()
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
with gr.Row():
|
| 313 |
-
gr.LoginButton()
|
| 314 |
-
submit_button = gr.Button("Submit Eval On Test")
|
| 315 |
-
submission_result = gr.Markdown()
|
| 316 |
-
submit_button.click(
|
| 317 |
-
add_new_eval,
|
| 318 |
-
[
|
| 319 |
-
#level_of_test,
|
| 320 |
-
model_name_textbox,
|
| 321 |
-
model_family_textbox,
|
| 322 |
-
system_prompt_textbox,
|
| 323 |
-
url_textbox,
|
| 324 |
-
file_output,
|
| 325 |
-
organisation,
|
| 326 |
-
mail
|
| 327 |
-
],
|
| 328 |
-
submission_result,
|
| 329 |
-
)
|
| 330 |
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" Basic Agent Evaluation Runner"""
|
| 2 |
import os
|
| 3 |
+
import inspect
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
+
import requests
|
| 6 |
import pandas as pd
|
| 7 |
+
from langchain_core.messages import HumanMessage
|
| 8 |
+
from agent import build_graph
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
|
|
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# (Keep Constants as is)
|
| 13 |
+
# --- Constants ---
|
| 14 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 15 |
|
| 16 |
+
# --- Basic Agent Definition ---
|
| 17 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 18 |
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
class BasicAgent:
|
| 21 |
+
"""A langgraph agent."""
|
| 22 |
+
def __init__(self):
|
| 23 |
+
print("BasicAgent initialized.")
|
| 24 |
+
self.graph = build_graph()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
def __call__(self, question: str) -> str:
|
| 27 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 28 |
+
messages = [HumanMessage(content=question)]
|
| 29 |
+
result = self.graph.invoke({"messages": messages})
|
| 30 |
+
answer = result['messages'][-1].content
|
| 31 |
+
return answer # kein [14:] mehr nötig!
|
| 32 |
|
|
|
|
| 33 |
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 36 |
+
"""
|
| 37 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 38 |
+
and displays the results.
|
| 39 |
+
"""
|
| 40 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 41 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 42 |
|
| 43 |
+
if profile:
|
| 44 |
+
username= f"{profile.username}"
|
| 45 |
+
print(f"User logged in: {username}")
|
| 46 |
+
else:
|
| 47 |
+
print("User not logged in.")
|
| 48 |
+
return "Please Login to Hugging Face with the button.", None
|
| 49 |
|
| 50 |
+
api_url = DEFAULT_API_URL
|
| 51 |
+
questions_url = f"{api_url}/questions"
|
| 52 |
+
submit_url = f"{api_url}/submit"
|
| 53 |
|
| 54 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
try:
|
| 56 |
+
agent = BasicAgent()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
except Exception as e:
|
| 58 |
+
print(f"Error instantiating agent: {e}")
|
| 59 |
+
return f"Error initializing agent: {e}", None
|
| 60 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 61 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 62 |
+
print(agent_code)
|
| 63 |
+
|
| 64 |
+
# 2. Fetch Questions
|
| 65 |
+
print(f"Fetching questions from: {questions_url}")
|
| 66 |
+
try:
|
| 67 |
+
response = requests.get(questions_url, timeout=15)
|
| 68 |
+
response.raise_for_status()
|
| 69 |
+
questions_data = response.json()
|
| 70 |
+
if not questions_data:
|
| 71 |
+
print("Fetched questions list is empty.")
|
| 72 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 73 |
+
print(f"Fetched {len(questions_data)} questions.")
|
| 74 |
+
except requests.exceptions.RequestException as e:
|
| 75 |
+
print(f"Error fetching questions: {e}")
|
| 76 |
+
return f"Error fetching questions: {e}", None
|
| 77 |
+
except requests.exceptions.JSONDecodeError as e:
|
| 78 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 79 |
+
print(f"Response text: {response.text[:500]}")
|
| 80 |
+
return f"Error decoding server response for questions: {e}", None
|
| 81 |
+
except Exception as e:
|
| 82 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
| 83 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
| 84 |
+
|
| 85 |
+
# 3. Run your Agent
|
| 86 |
+
results_log = []
|
| 87 |
+
answers_payload = []
|
| 88 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 89 |
+
for item in questions_data:
|
| 90 |
+
task_id = item.get("task_id")
|
| 91 |
+
question_text = item.get("question")
|
| 92 |
+
if not task_id or question_text is None:
|
| 93 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 94 |
+
continue
|
| 95 |
+
try:
|
| 96 |
+
submitted_answer = agent(question_text)
|
| 97 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 98 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 99 |
+
except Exception as e:
|
| 100 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 101 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 102 |
+
|
| 103 |
+
if not answers_payload:
|
| 104 |
+
print("Agent did not produce any answers to submit.")
|
| 105 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 106 |
+
|
| 107 |
+
# 4. Prepare Submission
|
| 108 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 109 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 110 |
+
print(status_update)
|
| 111 |
+
|
| 112 |
+
# 5. Submit
|
| 113 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 114 |
+
try:
|
| 115 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 116 |
+
response.raise_for_status()
|
| 117 |
+
result_data = response.json()
|
| 118 |
+
final_status = (
|
| 119 |
+
f"Submission Successful!\n"
|
| 120 |
+
f"User: {result_data.get('username')}\n"
|
| 121 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 122 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 123 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
| 124 |
+
)
|
| 125 |
+
print("Submission successful.")
|
| 126 |
+
results_df = pd.DataFrame(results_log)
|
| 127 |
+
return final_status, results_df
|
| 128 |
+
except requests.exceptions.HTTPError as e:
|
| 129 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
| 130 |
+
try:
|
| 131 |
+
error_json = e.response.json()
|
| 132 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 133 |
+
except requests.exceptions.JSONDecodeError:
|
| 134 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
| 135 |
+
status_message = f"Submission Failed: {error_detail}"
|
| 136 |
+
print(status_message)
|
| 137 |
+
results_df = pd.DataFrame(results_log)
|
| 138 |
+
return status_message, results_df
|
| 139 |
+
except requests.exceptions.Timeout:
|
| 140 |
+
status_message = "Submission Failed: The request timed out."
|
| 141 |
+
print(status_message)
|
| 142 |
+
results_df = pd.DataFrame(results_log)
|
| 143 |
+
return status_message, results_df
|
| 144 |
+
except requests.exceptions.RequestException as e:
|
| 145 |
+
status_message = f"Submission Failed: Network error - {e}"
|
| 146 |
+
print(status_message)
|
| 147 |
+
results_df = pd.DataFrame(results_log)
|
| 148 |
+
return status_message, results_df
|
| 149 |
+
except Exception as e:
|
| 150 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
| 151 |
+
print(status_message)
|
| 152 |
+
results_df = pd.DataFrame(results_log)
|
| 153 |
+
return status_message, results_df
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
# --- Build Gradio Interface using Blocks ---
|
| 157 |
+
with gr.Blocks() as demo:
|
| 158 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 159 |
+
gr.Markdown(
|
| 160 |
+
"""
|
| 161 |
+
**Instructions:**
|
| 162 |
+
|
| 163 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 164 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 165 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 166 |
+
|
| 167 |
+
---
|
| 168 |
+
**Disclaimers:**
|
| 169 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 170 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 171 |
+
"""
|
| 172 |
+
)
|
| 173 |
|
| 174 |
+
gr.LoginButton()
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 179 |
+
# Removed max_rows=10 from DataFrame constructor
|
| 180 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
run_button.click(
|
| 183 |
+
fn=run_and_submit_all,
|
| 184 |
+
outputs=[status_output, results_table]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
+
if __name__ == "__main__":
|
| 188 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 189 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 190 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
| 191 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 192 |
+
|
| 193 |
+
if space_host_startup:
|
| 194 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 195 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 196 |
+
else:
|
| 197 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 198 |
+
|
| 199 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 200 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 201 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 202 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 203 |
+
else:
|
| 204 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 205 |
+
|
| 206 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 207 |
+
|
| 208 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 209 |
+
demo.launch(debug=True, share=False)
|