Spaces:
Running
Running
File size: 17,094 Bytes
de8eebd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
"""
Zero-Shot Bird Identification using LLM.
This is the CORE innovation: Instead of training on every bird,
we use the LLM's knowledge to identify ANY bird from audio features.
The LLM has learned about thousands of bird species from its training data,
including their calls, habitats, and behaviors.
"""
import json
import logging
from dataclasses import dataclass
from typing import List, Dict, Any, Optional, Tuple
import numpy as np
from .ollama_client import OllamaClient, OllamaConfig
logger = logging.getLogger(__name__)
@dataclass
class AudioFeatures:
"""Extracted audio features for LLM analysis."""
duration: float
dominant_frequency_hz: float
frequency_range: Tuple[float, float]
spectral_centroid: float
spectral_bandwidth: float
tempo_bpm: float
num_syllables: int
syllable_rate: float # syllables per second
is_melodic: bool
is_repetitive: bool
amplitude_pattern: str # "constant", "rising", "falling", "varied"
estimated_snr_db: float
quality_score: float
@dataclass
class ZeroShotResult:
"""Result from zero-shot identification."""
species_name: str
scientific_name: str
confidence: float # 0.0 to 1.0
confidence_label: str # "high", "medium", "low"
reasoning: str
key_features_matched: List[str]
alternative_species: List[Dict[str, Any]]
is_indian_bird: bool
is_unusual_sighting: bool
unusual_reason: Optional[str]
call_description: str
class ZeroShotBirdIdentifier:
"""
Zero-shot bird identification using LLM.
This approach:
1. Extracts audio features (frequency, pattern, duration)
2. Sends features to LLM with expert prompt
3. LLM identifies bird from its knowledge base
4. Returns species with confidence and reasoning
Benefits:
- No training required
- Can identify ANY of 10,000+ bird species
- Works for non-Indian birds too (with novelty flag)
- Explainable results
"""
def __init__(self, ollama_config: Optional[OllamaConfig] = None):
self.ollama = OllamaClient(ollama_config or OllamaConfig(model="qwen2.5:3b"))
self.is_ready = False
def initialize(self) -> bool:
"""Check if LLM is available."""
try:
import asyncio
async def _check():
return await self.ollama.health_check()
try:
loop = asyncio.get_event_loop()
if loop.is_running():
import nest_asyncio
nest_asyncio.apply()
self.is_ready = loop.run_until_complete(_check())
except RuntimeError:
self.is_ready = asyncio.run(_check())
return self.is_ready
except Exception as e:
logger.warning(f"Failed to initialize LLM: {e}")
return False
def extract_features(
self,
audio: np.ndarray,
sample_rate: int = 32000,
mel_spec: Optional[np.ndarray] = None
) -> AudioFeatures:
"""Extract audio features for LLM analysis."""
import scipy.signal as signal
duration = len(audio) / sample_rate
# Frequency analysis
freqs, psd = signal.welch(audio, sample_rate, nperseg=2048)
# Dominant frequency
dominant_idx = np.argmax(psd)
dominant_freq = freqs[dominant_idx]
# Frequency range (where 90% of energy is)
cumsum = np.cumsum(psd) / np.sum(psd)
freq_low = freqs[np.searchsorted(cumsum, 0.05)]
freq_high = freqs[np.searchsorted(cumsum, 0.95)]
# Spectral centroid
spectral_centroid = np.sum(freqs * psd) / (np.sum(psd) + 1e-10)
# Spectral bandwidth
spectral_bandwidth = np.sqrt(np.sum(((freqs - spectral_centroid) ** 2) * psd) / (np.sum(psd) + 1e-10))
# Amplitude envelope analysis
envelope = np.abs(signal.hilbert(audio))
envelope_smooth = signal.medfilt(envelope, 1001)
# Detect syllables (peaks in envelope)
peaks, _ = signal.find_peaks(envelope_smooth, height=0.1 * np.max(envelope_smooth), distance=sample_rate // 10)
num_syllables = len(peaks)
syllable_rate = num_syllables / duration if duration > 0 else 0
# Amplitude pattern
if len(envelope_smooth) > 100:
start_amp = np.mean(envelope_smooth[:len(envelope_smooth)//4])
end_amp = np.mean(envelope_smooth[-len(envelope_smooth)//4:])
amp_var = np.std(envelope_smooth) / (np.mean(envelope_smooth) + 1e-10)
if amp_var > 0.5:
amp_pattern = "varied"
elif end_amp > start_amp * 1.3:
amp_pattern = "rising"
elif end_amp < start_amp * 0.7:
amp_pattern = "falling"
else:
amp_pattern = "constant"
else:
amp_pattern = "constant"
# Melodic detection (frequency variation)
if len(audio) > sample_rate:
chunks = np.array_split(audio, 10)
chunk_freqs = []
for chunk in chunks:
if len(chunk) > 512:
f, p = signal.welch(chunk, sample_rate, nperseg=512)
chunk_freqs.append(f[np.argmax(p)])
freq_variation = np.std(chunk_freqs) / (np.mean(chunk_freqs) + 1e-10)
is_melodic = freq_variation > 0.1
else:
is_melodic = False
# Repetitiveness detection
if num_syllables >= 3:
if syllable_rate > 1.5 and syllable_rate < 10: # Regular pattern
is_repetitive = True
else:
is_repetitive = False
else:
is_repetitive = num_syllables >= 2
# SNR estimation
noise_floor = np.percentile(np.abs(audio), 10)
signal_peak = np.percentile(np.abs(audio), 95)
snr_db = 20 * np.log10((signal_peak + 1e-10) / (noise_floor + 1e-10))
# Quality score
quality_score = min(1.0, max(0.0, (snr_db - 5) / 25))
# Tempo (for rhythmic calls)
if num_syllables >= 2:
tempo_bpm = syllable_rate * 60
else:
tempo_bpm = 0
return AudioFeatures(
duration=duration,
dominant_frequency_hz=float(dominant_freq),
frequency_range=(float(freq_low), float(freq_high)),
spectral_centroid=float(spectral_centroid),
spectral_bandwidth=float(spectral_bandwidth),
tempo_bpm=float(tempo_bpm),
num_syllables=num_syllables,
syllable_rate=float(syllable_rate),
is_melodic=is_melodic,
is_repetitive=is_repetitive,
amplitude_pattern=amp_pattern,
estimated_snr_db=float(snr_db),
quality_score=float(quality_score)
)
def identify(
self,
features: AudioFeatures,
location: Optional[str] = None,
month: Optional[int] = None,
user_description: Optional[str] = None
) -> ZeroShotResult:
"""
Identify bird species using zero-shot LLM inference.
This is the NOVEL approach - using LLM's knowledge to identify
any bird without needing to train on that specific species.
"""
# Build expert prompt
prompt = self._build_identification_prompt(features, location, month, user_description)
# Call LLM (synchronously using asyncio)
try:
import asyncio
async def _generate():
return await self.ollama.generate(
prompt,
system_prompt=self._get_expert_system_prompt(),
temperature=0.3, # Lower for more deterministic
max_tokens=1000
)
# Run async in sync context
try:
loop = asyncio.get_event_loop()
if loop.is_running():
# Use nest_asyncio for nested event loops
import nest_asyncio
nest_asyncio.apply()
response = loop.run_until_complete(_generate())
except RuntimeError:
# No event loop running
response = asyncio.run(_generate())
# Parse response
return self._parse_identification_response(response, features)
except Exception as e:
logger.error(f"LLM identification failed: {e}")
return self._fallback_result(features)
def _get_expert_system_prompt(self) -> str:
"""Expert ornithologist system prompt."""
return """You are an expert ornithologist with deep knowledge of bird vocalizations worldwide.
You can identify birds by their calls based on frequency, pattern, duration, and context.
Your expertise includes:
- 10,000+ bird species globally
- Detailed knowledge of Indian birds (1,300+ species)
- Ability to distinguish similar-sounding species
- Understanding of seasonal and geographic variations
When identifying birds:
1. Consider the audio characteristics carefully
2. Match against known bird call patterns
3. Account for regional variations
4. Flag unusual or rare sightings
5. Provide confidence based on how well features match
Always respond in the exact JSON format requested."""
def _build_identification_prompt(
self,
features: AudioFeatures,
location: Optional[str],
month: Optional[int],
user_description: Optional[str]
) -> str:
"""Build identification prompt from audio features."""
# Describe frequency in bird call terms
freq_desc = self._describe_frequency(features.dominant_frequency_hz)
# Season
season = self._get_season(month) if month else "unknown"
prompt = f"""Identify this bird based on its call characteristics:
## Audio Features
- **Duration**: {features.duration:.1f} seconds
- **Dominant Frequency**: {features.dominant_frequency_hz:.0f} Hz ({freq_desc})
- **Frequency Range**: {features.frequency_range[0]:.0f} - {features.frequency_range[1]:.0f} Hz
- **Call Pattern**: {"Melodic/varied" if features.is_melodic else "Monotone"}, {"Repetitive" if features.is_repetitive else "Non-repetitive"}
- **Syllables**: {features.num_syllables} syllables at {features.syllable_rate:.1f}/second
- **Rhythm**: {features.tempo_bpm:.0f} BPM (beats per minute)
- **Amplitude**: {features.amplitude_pattern} pattern
## Context
- **Location**: {location or "India (unspecified)"}
- **Season**: {season}
- **Recording Quality**: {self._quality_label(features.quality_score)} (SNR: {features.estimated_snr_db:.0f}dB)
"""
if user_description:
prompt += f"- **Observer Notes**: {user_description}\n"
prompt += """
## Task
Based on these audio features, identify the most likely bird species.
Respond in this exact JSON format:
{
"species_name": "Common Name",
"scientific_name": "Genus species",
"confidence": 0.85,
"reasoning": "Detailed explanation of why this species matches...",
"key_features_matched": ["feature1", "feature2"],
"alternatives": [
{"name": "Alternative 1", "scientific": "Genus species", "confidence": 0.1},
{"name": "Alternative 2", "scientific": "Genus species", "confidence": 0.05}
],
"is_indian_bird": true,
"is_unusual": false,
"unusual_reason": null,
"typical_call": "Description of what this bird typically sounds like"
}"""
return prompt
def _describe_frequency(self, freq: float) -> str:
"""Describe frequency in bird call terms."""
if freq < 500:
return "very low (large bird or booming call)"
elif freq < 1000:
return "low (owl, dove, or large bird)"
elif freq < 2000:
return "low-medium (cuckoo, crow, or medium bird)"
elif freq < 4000:
return "medium (most songbirds)"
elif freq < 6000:
return "medium-high (warbler, sunbird)"
elif freq < 8000:
return "high (small passerine)"
else:
return "very high (insect-like or whistle)"
def _get_season(self, month: int) -> str:
"""Get Indian season from month."""
if month in [12, 1, 2]:
return "winter (Dec-Feb) - winter migrants present"
elif month in [3, 4, 5]:
return "summer/pre-monsoon (Mar-May) - breeding season"
elif month in [6, 7, 8, 9]:
return "monsoon (Jun-Sep)"
else:
return "post-monsoon (Oct-Nov) - migration period"
def _quality_label(self, score: float) -> str:
"""Convert quality score to label."""
if score > 0.8:
return "excellent"
elif score > 0.6:
return "good"
elif score > 0.4:
return "fair"
else:
return "poor"
def _parse_identification_response(
self,
response: str,
features: AudioFeatures
) -> ZeroShotResult:
"""Parse LLM response into structured result."""
try:
# Try to extract JSON from response
json_start = response.find('{')
json_end = response.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
json_str = response[json_start:json_end]
data = json.loads(json_str)
confidence = float(data.get('confidence', 0.5))
return ZeroShotResult(
species_name=data.get('species_name', 'Unknown'),
scientific_name=data.get('scientific_name', ''),
confidence=confidence,
confidence_label=self._confidence_label(confidence),
reasoning=data.get('reasoning', ''),
key_features_matched=data.get('key_features_matched', []),
alternative_species=data.get('alternatives', []),
is_indian_bird=data.get('is_indian_bird', True),
is_unusual_sighting=data.get('is_unusual', False),
unusual_reason=data.get('unusual_reason'),
call_description=data.get('typical_call', '')
)
except json.JSONDecodeError as e:
logger.warning(f"Failed to parse LLM JSON: {e}")
# Fallback: try to extract species name from text
return self._fallback_result(features, response)
def _confidence_label(self, confidence: float) -> str:
"""Convert confidence to label."""
if confidence >= 0.8:
return "high"
elif confidence >= 0.6:
return "medium"
else:
return "low"
def _fallback_result(
self,
features: AudioFeatures,
llm_response: str = ""
) -> ZeroShotResult:
"""Generate fallback result when LLM parsing fails."""
# Try to guess based on frequency
if features.dominant_frequency_hz < 1000:
if features.is_repetitive:
species = "Spotted Owlet"
scientific = "Athene brama"
else:
species = "Indian Cuckoo"
scientific = "Cuculus micropterus"
elif features.dominant_frequency_hz < 3000:
if features.is_melodic:
species = "Oriental Magpie-Robin"
scientific = "Copsychus saularis"
else:
species = "Asian Koel"
scientific = "Eudynamys scolopaceus"
else:
if features.syllable_rate > 3:
species = "Coppersmith Barbet"
scientific = "Psilopogon haemacephalus"
else:
species = "Common Tailorbird"
scientific = "Orthotomus sutorius"
return ZeroShotResult(
species_name=species,
scientific_name=scientific,
confidence=0.4,
confidence_label="low",
reasoning="Identification based on audio frequency and pattern analysis. LLM analysis unavailable.",
key_features_matched=["frequency range", "call pattern"],
alternative_species=[],
is_indian_bird=True,
is_unusual_sighting=False,
unusual_reason=None,
call_description=""
)
# Global instance for quick access
_identifier: Optional[ZeroShotBirdIdentifier] = None
def get_zero_shot_identifier() -> ZeroShotBirdIdentifier:
"""Get or create global zero-shot identifier."""
global _identifier
if _identifier is None:
_identifier = ZeroShotBirdIdentifier()
return _identifier
|