birdsense-pro / app.py
sohiyiy's picture
Upload folder using huggingface_hub
e1d82cf verified
"""
🐦 BirdSense Pro - AI Bird Identification
- Local: Ollama LLaVA (vision) + Llama3.2 (text/audio)
- Cloud: HuggingFace BLIP-2 + Text models
NO HARDCODED BIRDS - Pure AI identification
"""
import gradio as gr
import numpy as np
import scipy.signal as signal
from typing import Tuple, List, Dict, Optional
import json
import requests
import re
import urllib.parse
import os
import traceback
from PIL import Image
import io
import base64
# ================== CONFIG ==================
OLLAMA_URL = os.environ.get("OLLAMA_URL", "http://localhost:11434")
HF_TOKEN = os.environ.get("HF_TOKEN", "")
DEBUG = True
def log(msg):
if DEBUG:
print(f"[BirdSense] {msg}")
# ================== CSS ==================
CSS = """
.gradio-container {
background: linear-gradient(135deg, #f0f4f8 0%, #d9e2ec 100%) !important;
font-family: 'Inter', sans-serif !important;
}
.header {
background: linear-gradient(135deg, #1a365d 0%, #2c5282 50%, #3182ce 100%);
color: white; padding: 35px 20px; border-radius: 16px;
text-align: center; margin-bottom: 16px;
box-shadow: 0 10px 30px rgba(26, 54, 93, 0.25);
}
.header h1 { font-size: 2.2rem; font-weight: 800; margin: 0 0 8px 0; }
.header .subtitle { font-size: 1rem; opacity: 0.9; margin-bottom: 10px; }
.header .status {
display: inline-flex; align-items: center; gap: 6px;
background: rgba(255,255,255,0.15); padding: 6px 16px; border-radius: 50px;
font-weight: 600; font-size: 0.85rem;
}
.status-dot { width: 8px; height: 8px; border-radius: 50%; }
.status-green { background: #48bb78; }
.status-yellow { background: #ecc94b; }
.status-red { background: #fc8181; }
.info-box {
background: linear-gradient(135deg, #ebf4ff 0%, #c3dafe 100%);
border: 1px solid #90cdf4; border-radius: 10px; padding: 14px; margin-bottom: 14px;
}
.info-box h3 { color: #2b6cb0; margin: 0 0 4px 0; font-size: 0.95rem; }
.info-box p { color: #4299e1; margin: 0; font-size: 0.85rem; }
.bird-card {
background: white; border: 1px solid #e2e8f0; border-radius: 14px;
padding: 16px; margin: 10px 0; display: flex; gap: 14px;
box-shadow: 0 3px 10px rgba(0,0,0,0.04);
}
.bird-card img { width: 100px; height: 100px; object-fit: cover; border-radius: 10px; flex-shrink: 0; }
.bird-info { flex: 1; min-width: 0; }
.bird-info h3 { color: #1a202c; margin: 0 0 3px 0; font-size: 1.1rem; font-weight: 700; }
.bird-info .scientific { color: #718096; font-style: italic; font-size: 0.8rem; margin-bottom: 8px; }
.confidence { display: inline-block; padding: 3px 10px; border-radius: 16px; font-weight: 700; font-size: 0.75rem; }
.conf-high { background: #c6f6d5; color: #22543d; }
.conf-med { background: #fefcbf; color: #744210; }
.conf-low { background: #fed7d7; color: #742a2a; }
.reason { color: #4a5568; margin-top: 8px; line-height: 1.5; font-size: 0.85rem; }
.error { background: #fff5f5; border: 1px solid #fc8181; border-radius: 10px; padding: 16px; color: #c53030; }
.success { background: #f0fff4; border: 1px solid #68d391; border-radius: 10px; padding: 16px; color: #276749; }
.processing { background: #ebf8ff; border: 1px solid #63b3ed; border-radius: 10px; padding: 16px; color: #2b6cb0; }
.features-box { background: #f7fafc; border: 1px solid #e2e8f0; border-radius: 8px; padding: 12px; margin: 8px 0; font-size: 0.8rem; }
"""
# ================== OLLAMA FUNCTIONS ==================
def check_ollama_models() -> Dict:
"""Check available Ollama models."""
result = {"available": False, "vision_model": None, "text_model": None}
try:
response = requests.get(f"{OLLAMA_URL}/api/tags", timeout=3)
if response.status_code == 200:
models = [m["name"] for m in response.json().get("models", [])]
log(f"Ollama models: {models}")
result["available"] = True
# Find vision model
for m in models:
if "llava" in m.lower() or "bakllava" in m.lower():
result["vision_model"] = m
break
# Find text model
for m in models:
if any(t in m.lower() for t in ["llama", "qwen", "mistral", "phi"]):
if "llava" not in m.lower(): # Exclude vision models
result["text_model"] = m
break
except Exception as e:
log(f"Ollama check failed: {e}")
return result
def call_llava(image: Image.Image, prompt: str, model: str) -> str:
"""Call LLaVA vision model."""
try:
# Resize image
max_size = 768
if max(image.size) > max_size:
ratio = max_size / max(image.size)
image = image.resize((int(image.size[0]*ratio), int(image.size[1]*ratio)), Image.Resampling.LANCZOS)
# Convert to base64
buffer = io.BytesIO()
image.save(buffer, format="JPEG", quality=85)
img_b64 = base64.b64encode(buffer.getvalue()).decode()
log(f"Calling LLaVA ({model}) with {len(img_b64)} bytes image...")
response = requests.post(
f"{OLLAMA_URL}/api/generate",
json={
"model": model,
"prompt": prompt,
"images": [img_b64],
"stream": False,
"options": {"temperature": 0.1, "num_predict": 1200}
},
timeout=120
)
if response.status_code == 200:
result = response.json().get("response", "")
log(f"LLaVA response ({len(result)} chars): {result[:300]}...")
return result
else:
log(f"LLaVA error: {response.status_code} - {response.text[:200]}")
except Exception as e:
log(f"LLaVA call failed: {traceback.format_exc()}")
return ""
def call_ollama_text(prompt: str, model: str) -> str:
"""Call Ollama text model (for audio/description)."""
try:
log(f"Calling text model ({model})...")
response = requests.post(
f"{OLLAMA_URL}/api/generate",
json={
"model": model,
"prompt": prompt,
"stream": False,
"options": {"temperature": 0.2, "num_predict": 800}
},
timeout=60
)
if response.status_code == 200:
return response.json().get("response", "")
except Exception as e:
log(f"Text model error: {e}")
return ""
# ================== HUGGINGFACE FUNCTIONS ==================
def call_hf_image_caption(image: Image.Image) -> str:
"""Get image caption from HuggingFace BLIP."""
if not HF_TOKEN:
log("No HF_TOKEN")
return ""
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
# Resize
max_size = 512
if max(image.size) > max_size:
ratio = max_size / max(image.size)
image = image.resize((int(image.size[0]*ratio), int(image.size[1]*ratio)), Image.Resampling.LANCZOS)
buffer = io.BytesIO()
image.save(buffer, format="JPEG", quality=80)
models = [
"Salesforce/blip-image-captioning-large",
"Salesforce/blip-image-captioning-base",
]
for model in models:
try:
log(f"Trying HF caption model: {model}")
response = requests.post(
f"https://api-inference.huggingface.co/models/{model}",
headers=headers,
data=buffer.getvalue(),
timeout=45
)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and result:
caption = result[0].get("generated_text", "")
if caption:
log(f"HF caption: {caption}")
return caption
elif response.status_code == 503:
log(f"{model} loading, trying next...")
else:
log(f"HF error {response.status_code}: {response.text[:100]}")
except Exception as e:
log(f"HF caption error: {e}")
return ""
def call_hf_text(prompt: str) -> str:
"""Call HuggingFace text model."""
if not HF_TOKEN:
return ""
headers = {"Authorization": f"Bearer {HF_TOKEN}", "Content-Type": "application/json"}
models = [
"mistralai/Mistral-7B-Instruct-v0.2",
"HuggingFaceH4/zephyr-7b-beta",
"google/flan-t5-xl",
]
for model in models:
try:
log(f"Trying HF text model: {model}")
response = requests.post(
f"https://api-inference.huggingface.co/models/{model}",
headers=headers,
json={"inputs": prompt, "parameters": {"max_new_tokens": 600, "temperature": 0.3}},
timeout=45
)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and result:
text = result[0].get("generated_text", "")
if text:
log(f"HF text ({len(text)} chars)")
return text
elif response.status_code == 503:
continue
except Exception as e:
log(f"HF text error: {e}")
return ""
# ================== PARSING ==================
def parse_bird_response(text: str) -> Tuple[List[Dict], str]:
"""Parse LLM response to extract bird identifications. NO HARDCODED FALLBACKS."""
birds = []
summary = ""
if not text:
return [], ""
log(f"Parsing response: {text[:500]}...")
# Try JSON first
try:
json_match = re.search(r'\{[\s\S]*"birds"[\s\S]*\}', text)
if json_match:
json_str = json_match.group()
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str) # Fix trailing commas
data = json.loads(json_str)
raw_birds = data.get("birds", [])
summary = data.get("summary", "")
for b in raw_birds:
name = b.get("name", "").strip()
# Filter out garbage
if name and len(name) > 2 and name.lower() not in ["the bird", "bird", "unknown", "the image", "image"]:
birds.append({
"name": name,
"scientific_name": b.get("scientific_name", ""),
"confidence": min(99, max(1, int(b.get("confidence", 70)))),
"reason": b.get("reason", "Identified by AI")
})
if birds:
return birds, summary
except json.JSONDecodeError as e:
log(f"JSON parse error: {e}")
# Fallback: Extract from text using patterns
# Look for "This is a/an [Bird Name]" or "[Bird Name] (Scientific name)"
patterns = [
r"(?:this is|identified as|appears to be|looks like|most likely)\s+(?:a|an|the)?\s*([A-Z][a-z]+(?:[-\s][A-Za-z]+){0,3})",
r"([A-Z][a-z]+(?:\s[A-Za-z]+)?)\s*\(([A-Z][a-z]+\s[a-z]+)\)", # Name (Scientific name)
r"species[:\s]+([A-Z][a-z]+(?:\s[A-Za-z]+)?)",
]
for pattern in patterns:
matches = re.findall(pattern, text)
for match in matches:
if isinstance(match, tuple):
name = match[0].strip()
else:
name = match.strip()
# Validate it looks like a bird name
if name and len(name) > 3 and name.lower() not in ["the bird", "bird", "unknown"]:
# Check it's not a common non-bird word
skip_words = ["the", "this", "that", "image", "photo", "picture", "bird", "species"]
if name.lower() not in skip_words:
birds.append({
"name": name,
"scientific_name": "",
"confidence": 65,
"reason": "Extracted from AI analysis"
})
break
if birds:
break
return birds[:3], summary # Max 3 birds
def get_bird_image(bird_name: str) -> str:
"""Get bird image from Wikipedia."""
if not bird_name or len(bird_name) < 3:
return ""
try:
# Clean name for Wikipedia
clean = bird_name.strip().replace(" ", "_")
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{urllib.parse.quote(clean)}"
response = requests.get(url, timeout=5)
if response.status_code == 200:
data = response.json()
if "thumbnail" in data:
img_url = data["thumbnail"]["source"]
log(f"Got Wikipedia image for {bird_name}")
return img_url
elif "originalimage" in data:
return data["originalimage"]["source"]
except Exception as e:
log(f"Wikipedia image error: {e}")
# Fallback placeholder with bird name
return f"https://via.placeholder.com/120x120/4299e1/ffffff?text={urllib.parse.quote(bird_name[:10])}"
def format_bird_card(bird: Dict, index: int) -> str:
"""Format bird as HTML card."""
name = bird.get("name", "Unknown")
scientific = bird.get("scientific_name", "")
confidence = bird.get("confidence", 50)
reason = bird.get("reason", "")
img_url = get_bird_image(name)
conf_class = "conf-high" if confidence >= 80 else "conf-med" if confidence >= 60 else "conf-low"
return f"""
<div class="bird-card">
<img src="{img_url}" alt="{name}" onerror="this.style.display='none'">
<div class="bird-info">
<h3>{index}. {name}</h3>
{f'<div class="scientific">{scientific}</div>' if scientific else ''}
<span class="confidence {conf_class}">{confidence}% confidence</span>
<p class="reason">{reason}</p>
</div>
</div>"""
# ================== IDENTIFICATION FUNCTIONS ==================
IMAGE_PROMPT = """Look at this bird image carefully. Identify the bird species.
You MUST respond with valid JSON in this exact format:
{
"birds": [
{
"name": "Blue-and-yellow Macaw",
"scientific_name": "Ara ararauna",
"confidence": 95,
"reason": "Large parrot with bright blue wings and yellow underparts, characteristic of this species"
}
],
"summary": "This is a Blue-and-yellow Macaw, a large South American parrot."
}
Look for:
- Beak shape and color
- Body colors and patterns
- Size and shape
- Any distinctive markings
Give the ACTUAL species name (not "bird" or "unknown"). If unsure, give your best guess with lower confidence.
Return ONLY the JSON."""
def identify_image_stream(image):
"""Identify bird from image."""
if image is None:
yield '<div class="error">⚠️ Please upload an image</div>'
return
try:
if not isinstance(image, Image.Image):
image = Image.fromarray(np.array(image))
image = image.convert("RGB")
yield '<div class="processing">πŸ” Analyzing image...</div>'
models = check_ollama_models()
response = ""
method = ""
# Try LLaVA first (best for images)
if models["vision_model"]:
yield f'<div class="processing">πŸ¦™ Using LLaVA vision model...</div>'
response = call_llava(image, IMAGE_PROMPT, models["vision_model"])
method = "LLaVA Vision"
# Fallback to HuggingFace
if not response:
yield '<div class="processing">☁️ Using HuggingFace AI...</div>'
# Get caption first
caption = call_hf_image_caption(image)
if caption:
yield f'<div class="processing">πŸ” Identifying from caption...</div><div class="features-box"><b>AI sees:</b> {caption}</div>'
# Use text model to identify
text_prompt = f"""Based on this image description, identify the bird species:
"{caption}"
Respond with JSON:
{{"birds": [{{"name": "Species Name", "scientific_name": "...", "confidence": 80, "reason": "..."}}], "summary": "..."}}
Give the ACTUAL bird species name. Return ONLY JSON."""
if models["text_model"]:
response = call_ollama_text(text_prompt, models["text_model"])
if not response:
response = call_hf_text(text_prompt)
method = "HuggingFace BLIP + Text"
else:
yield '<div class="error">❌ Could not analyze image. HuggingFace API may be unavailable.</div>'
return
# Parse response
birds, summary = parse_bird_response(response)
if not birds:
yield f'''<div class="error">
<b>❌ Could not identify bird species</b>
<p>The AI response couldn't be parsed. Try a clearer image.</p>
<div class="features-box"><b>Raw AI response:</b><br>{response[:500] if response else "No response"}</div>
</div>'''
return
# Success
result = f'''<div class="success">
<h3>🐦 {len(birds)} Bird(s) Identified!</h3>
<p>{summary or f"Identified using {method}"}</p>
</div>'''
for i, bird in enumerate(birds, 1):
result += format_bird_card(bird, i)
yield result
except Exception as e:
log(f"Image error: {traceback.format_exc()}")
yield f'<div class="error">❌ Error: {str(e)}</div>'
# ================== AUDIO IDENTIFICATION ==================
def process_audio(audio_data: np.ndarray, sr: int) -> Dict:
"""Extract audio features for bird identification."""
try:
audio = audio_data.astype(np.float64)
if np.max(np.abs(audio)) > 0:
audio = audio / np.max(np.abs(audio))
# Bandpass filter (500Hz - 10kHz for birds)
nyq = sr / 2
low, high = max(500/nyq, 0.01), min(10000/nyq, 0.99)
if low < high:
b, a = signal.butter(4, [low, high], btype='band')
audio = signal.filtfilt(b, a, audio)
duration = len(audio_data) / sr
# Peak frequency
fft = np.fft.rfft(audio)
freqs = np.fft.rfftfreq(len(audio), 1/sr)
peak_freq = freqs[np.argmax(np.abs(fft))] if len(freqs) > 0 else 0
# Count syllables
envelope = np.abs(signal.hilbert(audio))
threshold = np.mean(envelope) + 0.5 * np.std(envelope)
syllables = np.sum(np.diff((envelope > threshold).astype(int)) > 0)
return {
"duration": round(duration, 2),
"peak_freq": int(peak_freq),
"syllables": int(syllables),
"freq_range": "high" if peak_freq > 3000 else "medium" if peak_freq > 1000 else "low"
}
except:
return {"duration": 0, "peak_freq": 0, "syllables": 0, "freq_range": "unknown"}
AUDIO_PROMPT = """You are an expert ornithologist. Identify the bird from these audio features:
- Duration: {duration} seconds
- Peak Frequency: {peak_freq} Hz ({freq_range} range)
- Syllables/notes detected: {syllables}
{extra}
Based on these acoustic features, identify possible bird species.
High frequency (>3000 Hz) = small birds like warblers, finches
Medium frequency (1000-3000 Hz) = thrushes, bulbuls, mynas
Low frequency (<1000 Hz) = larger birds like crows, doves
Respond with JSON ONLY:
{{"birds": [{{"name": "Species Name", "scientific_name": "...", "confidence": 70, "reason": "Matches because..."}}], "summary": "..."}}
Give ACTUAL species names, not generic terms."""
def identify_audio_stream(audio_input, location: str = "", month: str = ""):
"""Identify bird from audio - uses TEXT model, not vision."""
if audio_input is None:
yield '<div class="error">⚠️ Please upload or record audio</div>'
return
try:
if isinstance(audio_input, tuple):
sr, audio_data = audio_input
else:
yield '<div class="error">⚠️ Invalid audio format</div>'
return
if len(audio_data) == 0:
yield '<div class="error">⚠️ Empty audio</div>'
return
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1)
yield '<div class="processing">πŸ”Š Analyzing audio features...</div>'
features = process_audio(audio_data, sr)
features_html = f'''<div class="features-box">
<b>🎡 Audio Analysis</b><br>
β€’ Duration: {features["duration"]}s | Peak: {features["peak_freq"]} Hz ({features["freq_range"]})<br>
β€’ Syllables: {features["syllables"]}
</div>'''
yield f'<div class="processing">πŸ€– Identifying bird...</div>{features_html}'
extra = ""
if location: extra += f"\n- Location: {location}"
if month: extra += f"\n- Month: {month}"
prompt = AUDIO_PROMPT.format(**features, extra=extra)
models = check_ollama_models()
response = ""
# Use TEXT model for audio (NOT vision!)
if models["text_model"]:
yield f'<div class="processing">πŸ¦™ Using {models["text_model"]}...</div>{features_html}'
response = call_ollama_text(prompt, models["text_model"])
if not response:
yield f'<div class="processing">☁️ Using HuggingFace...</div>{features_html}'
response = call_hf_text(prompt)
birds, summary = parse_bird_response(response)
if not birds:
yield f'''<div class="error">
<b>Could not identify bird from audio</b>
<p>Try a clearer recording with less background noise.</p>
{features_html}
</div>'''
return
result = f'''<div class="success">
<h3>🐦 {len(birds)} Bird(s) Identified!</h3>
<p>{summary}</p>
</div>{features_html}'''
for i, bird in enumerate(birds, 1):
result += format_bird_card(bird, i)
yield result
except Exception as e:
log(f"Audio error: {traceback.format_exc()}")
yield f'<div class="error">❌ Error: {str(e)}</div>'
# ================== DESCRIPTION IDENTIFICATION ==================
def identify_description_stream(description: str):
"""Identify bird from text description."""
if not description or len(description.strip()) < 5:
yield '<div class="error">⚠️ Please enter a description</div>'
return
try:
yield '<div class="processing">πŸ” Analyzing description...</div>'
prompt = f"""Identify the bird species from this description:
"{description}"
Respond with JSON:
{{"birds": [{{"name": "Species Name", "scientific_name": "...", "confidence": 80, "reason": "..."}}], "summary": "..."}}
Use ACTUAL species names. Return ONLY JSON."""
models = check_ollama_models()
response = ""
if models["text_model"]:
yield '<div class="processing">πŸ¦™ Using local AI...</div>'
response = call_ollama_text(prompt, models["text_model"])
if not response:
yield '<div class="processing">☁️ Using HuggingFace...</div>'
response = call_hf_text(prompt)
birds, summary = parse_bird_response(response)
if not birds:
yield '<div class="error"><b>Could not identify bird</b><p>Try adding more details.</p></div>'
return
result = f'''<div class="success">
<h3>🐦 {len(birds)} Bird(s) Match!</h3>
<p>{summary}</p>
</div>'''
for i, bird in enumerate(birds, 1):
result += format_bird_card(bird, i)
yield result
except Exception as e:
yield f'<div class="error">❌ Error: {str(e)}</div>'
# ================== UI ==================
def get_status_html():
"""Get status indicator."""
models = check_ollama_models()
if models["vision_model"]:
return f'<span class="status-dot status-green"></span> LLaVA + {models["text_model"] or "HF"}'
elif models["text_model"]:
return f'<span class="status-dot status-yellow"></span> {models["text_model"]} (no vision)'
elif HF_TOKEN:
return '<span class="status-dot status-yellow"></span> HuggingFace Cloud'
else:
return '<span class="status-dot status-red"></span> Limited Mode'
def create_app():
with gr.Blocks(title="BirdSense Pro") as demo:
gr.HTML(f"<style>{CSS}</style>")
gr.HTML(f"""
<div class="header">
<h1>🐦 BirdSense Pro</h1>
<p class="subtitle">AI Bird Identification β€’ Audio β€’ Image β€’ Description</p>
<div class="status">{get_status_html()}</div>
</div>""")
# AUDIO FIRST
with gr.Tab("🎡 Audio"):
gr.HTML('<div class="info-box"><h3>🎡 Audio Identification</h3><p>Upload or record bird calls. Uses text AI to analyze acoustic features.</p></div>')
with gr.Row():
with gr.Column():
audio_in = gr.Audio(sources=["upload", "microphone"], type="numpy", label="🎀 Audio")
with gr.Row():
loc = gr.Textbox(label="πŸ“ Location", placeholder="e.g., Mumbai")
mon = gr.Dropdown(label="πŸ“… Month", choices=[""] + ["January","February","March","April","May","June","July","August","September","October","November","December"])
audio_btn = gr.Button("πŸ” Identify", variant="primary", size="lg")
with gr.Column():
audio_out = gr.HTML('<div style="padding:40px;text-align:center;color:#a0aec0">🎡 Upload audio to identify</div>')
audio_btn.click(identify_audio_stream, [audio_in, loc, mon], audio_out)
# IMAGE
with gr.Tab("πŸ“· Image"):
gr.HTML('<div class="info-box"><h3>πŸ“· Image Identification</h3><p>Upload a photo. Uses LLaVA vision AI to analyze the actual image.</p></div>')
with gr.Row():
with gr.Column():
img_in = gr.Image(sources=["upload", "webcam"], type="pil", label="πŸ“Έ Photo")
img_btn = gr.Button("πŸ” Identify", variant="primary", size="lg")
with gr.Column():
img_out = gr.HTML('<div style="padding:40px;text-align:center;color:#a0aec0">πŸ“· Upload image to identify</div>')
img_btn.click(identify_image_stream, [img_in], img_out)
# DESCRIPTION
with gr.Tab("πŸ“ Description"):
gr.HTML('<div class="info-box"><h3>πŸ“ Text Description</h3><p>Describe the bird - colors, size, behavior, sounds.</p></div>')
with gr.Row():
with gr.Column():
desc_in = gr.Textbox(label="✍️ Description", lines=3, placeholder="e.g., Large blue and yellow parrot with long tail")
desc_btn = gr.Button("πŸ” Identify", variant="primary", size="lg")
with gr.Column():
desc_out = gr.HTML('<div style="padding:40px;text-align:center;color:#a0aec0">πŸ“ Describe a bird</div>')
desc_btn.click(identify_description_stream, [desc_in], desc_out)
gr.HTML('<div style="text-align:center;padding:10px;color:#718096;font-size:0.8rem"><b>BirdSense Pro</b> β€’ Local: LLaVA (image) + Llama3.2 (audio/text) β€’ Cloud: HuggingFace BLIP</div>')
return demo
if __name__ == "__main__":
log("Starting BirdSense Pro...")
models = check_ollama_models()
log(f"Vision: {models['vision_model']}, Text: {models['text_model']}, HF: {bool(HF_TOKEN)}")
app = create_app()
app.launch(server_name="0.0.0.0", server_port=7860, show_error=True)