Improve model card: Add `library_name`, expanded description, GitHub link, and usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,20 +1,69 @@
|
|
| 1 |
---
|
| 2 |
base_model: Qwen/Qwen2.5-3B
|
| 3 |
-
license: apache-2.0
|
| 4 |
datasets:
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
| 6 |
metrics:
|
| 7 |
-
|
| 8 |
pipeline_tag: text-generation
|
| 9 |
-
|
| 10 |
-
- en
|
| 11 |
---
|
| 12 |
|
| 13 |
# Qwen2.5-3B-Intuitor-MATH-1EPOCH
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
---
|
| 20 |
|
|
@@ -27,5 +76,4 @@ An Intuitor-fine-tuned version of Qwen2.5-3B trained on the MATH dataset.
|
|
| 27 |
journal = {arXiv preprint arXiv:2505.19590},
|
| 28 |
year = {2025}
|
| 29 |
}
|
| 30 |
-
```
|
| 31 |
-
|
|
|
|
| 1 |
---
|
| 2 |
base_model: Qwen/Qwen2.5-3B
|
|
|
|
| 3 |
datasets:
|
| 4 |
+
- math
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
license: apache-2.0
|
| 8 |
metrics:
|
| 9 |
+
- accuracy
|
| 10 |
pipeline_tag: text-generation
|
| 11 |
+
library_name: transformers
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
# Qwen2.5-3B-Intuitor-MATH-1EPOCH
|
| 15 |
|
| 16 |
+
This model is an Intuitor-fine-tuned version of Qwen2.5-3B trained on the MATH dataset, as presented in the paper [Learning to Reason without External Rewards](https://huggingface.co/papers/2505.19590).
|
| 17 |
+
|
| 18 |
+
## Introduction
|
| 19 |
+
|
| 20 |
+
**Intuitor** is a reinforcement learning method that fine-tunes large language models (LLMs) using *self-certainty*—the model’s own internal confidence—as the sole reward. It is built on a novel paradigm we call **Reinforcement Learning from Internal Feedback (RLIF)**.
|
| 21 |
+
|
| 22 |
+
**Reinforcement Learning from Internal Feedback (RLIF)** is a training framework where language models learn *without any external rewards, gold labels, or verifiers*. Instead, models improve by optimizing *intrinsic signals*—such as confidence in their own answers—generated entirely from within. RLIF enables scalable and domain-agnostic fine-tuning of LLMs in settings where human feedback or verifiable supervision is expensive or unavailable.
|
| 23 |
+
|
| 24 |
+
Intuitor instantiates RLIF by using **self-certainty**—a model's confidence measured via KL divergence to uniform—as an intrinsic reward in the GRPO policy optimization algorithm.
|
| 25 |
+
|
| 26 |
+
For more details, see the [project's GitHub repository](https://github.com/sunblaze-ucb/Intuitor).
|
| 27 |
+
|
| 28 |
+
## Usage
|
| 29 |
+
|
| 30 |
+
You can use this model with the Hugging Face `transformers` library.
|
| 31 |
|
| 32 |
+
```python
|
| 33 |
+
import torch
|
| 34 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 35 |
+
|
| 36 |
+
model_id = "sunblaze-ucb/Qwen2.5-3B-Intuitor-MATH-1EPOCH"
|
| 37 |
+
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 40 |
+
model_id,
|
| 41 |
+
torch_dtype=torch.bfloat16, # or torch.float16 depending on your GPU
|
| 42 |
+
device_map="auto"
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
messages = [
|
| 46 |
+
{"role": "user", "content": "What is the capital of France?"},
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
text = tokenizer.apply_chat_template(
|
| 50 |
+
messages,
|
| 51 |
+
tokenize=False,
|
| 52 |
+
add_generation_prompt=True
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 56 |
+
|
| 57 |
+
generated_ids = model.generate(
|
| 58 |
+
model_inputs.input_ids,
|
| 59 |
+
max_new_tokens=50,
|
| 60 |
+
temperature=0.7,
|
| 61 |
+
do_sample=True
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
output = tokenizer.decode(generated_ids[0][model_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 65 |
+
print(output)
|
| 66 |
+
```
|
| 67 |
|
| 68 |
---
|
| 69 |
|
|
|
|
| 76 |
journal = {arXiv preprint arXiv:2505.19590},
|
| 77 |
year = {2025}
|
| 78 |
}
|
| 79 |
+
```
|
|
|