File size: 10,907 Bytes
82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 cd321b2 82f16c2 cd321b2 82f16c2 cd321b2 82f16c2 cd321b2 82f16c2 cd321b2 82f16c2 cd321b2 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 cd321b2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a 82f16c2 3cc029a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
---
license: apache-2.0
language:
- ja
- en
library_name: transformers
pipeline_tag: image-text-to-text
tags:
- vision
- vlm
- qwen
- lora
- document-understanding
- form-detection
- japanese
base_model: Qwen/Qwen3-VL-32B-Instruct
datasets:
- hand-dot/pdfme-form-field-dataset
---
# PDFme Form Field Detector (32B)
**Detects form fields that applicants need to fill in Japanese documents.**
This model is fine-tuned from [Qwen3-VL-32B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-32B-Instruct) using QLoRA to detect input fields in Japanese application forms, registration documents, and other official paperwork.
## What This Model Does
Given an image of a Japanese document, this model identifies the bounding boxes of form fields that **applicants/customers** should fill in, while **excluding fields meant for staff/officials**.
### Example Use Cases
- Automating form digitization
- Building PDF form generators
- Creating accessibility tools for document processing
## Model Details
| Item | Value |
|------|-------|
| Base Model | Qwen/Qwen3-VL-32B-Instruct |
| Fine-tuning Method | QLoRA (4-bit quantization + LoRA) |
| Training Data | [hand-dot/pdfme-form-field-dataset](https://huggingface.co/datasets/hand-dot/pdfme-form-field-dataset) (90 samples, augmented) |
| Output Format | JSON with normalized bbox coordinates (0-1000) |
## Performance
### Evaluation Results (IoU ≥ 0.5)
| Metric | 32B Model | 8B Model | Description |
|--------|-----------|----------|-------------|
| **Recall** | **13.56%** | 18.08% | Ground truth fields detected |
| **Precision** | **5.24%** | 7.90% | Correct predictions |
| **Average IoU** | **0.2163** | 0.2209 | Overlap between predicted and ground truth |
| Matches | 24/177 | 32/177 | Matched predictions |
| Predictions | 458 | 405 | Total predictions |
### Per-Sample Results (Best performers)
| Sample | Recall | Precision | IoU | Evaluation |
|--------|--------|-----------|-----|------------|
| **#2** | **60.00%** | **69.23%** | **0.507** | ⭐ Excellent |
| **#7** | 33.33% | 25.00% | 0.380 | Good |
| **#9** | 18.18% | 7.69% | 0.313 | Improved |
### Training Progress
| Epoch | Loss | Notes |
|-------|------|-------|
| Start | 18.74 | - |
| 0.5 | 11.13 | Rapid decrease |
| 1.0 | 6.72 | Stabilizing |
| 2.0 | 5.75 | Converging |
| 3.0 | **5.59** | Final |
**Loss improved: 18.74 → 5.59 (70% reduction)**
### Key Finding
Despite being 4x larger than the 8B model, the 32B model achieved similar accuracy. **The dataset (10 original samples) is the bottleneck**, not model capacity.
### Current Limitations
1. **Small training dataset** - 10 original samples, augmented to 90
2. **Over-detection tendency** - 458 predictions vs 177 ground truth (2.6x)
3. **Location precision** - Average IoU of 0.22 indicates room for improvement
## Quick Start
### Installation
```bash
pip install transformers peft torch accelerate bitsandbytes
```
### Inference
```python
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForImageTextToText
from peft import PeftModel
# Load model (32B)
base_model = "Qwen/Qwen3-VL-32B-Instruct"
model = AutoModelForImageTextToText.from_pretrained(
base_model,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
model = PeftModel.from_pretrained(model, "takumi123xxx/pdfme-form-field-detector-lora-32b")
processor = AutoProcessor.from_pretrained(base_model, trust_remote_code=True)
# Prepare prompt
system_prompt = """You are an expert at analyzing Japanese documents.
There are two types of input fields:
1. Fields for applicants/customers to fill → Target for detection
2. Fields for staff/officials to fill → Exclude from detection"""
user_prompt = """Detect all input fields that applicants should fill in this image.
Exclude fields for staff.
Return JSON with bbox coordinates (0-1000 normalized)."""
# Load image
image = Image.open("your_document.png").convert("RGB")
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": [
{"type": "image", "image": image},
{"type": "text", "text": user_prompt},
]},
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt").to(model.device)
output = model.generate(**inputs, max_new_tokens=2048)
result = processor.decode(output[0], skip_special_tokens=True)
print(result)
```
### Output Format
```json
{
"applicant_fields": [
{"bbox": [100, 200, 500, 250]},
{"bbox": [100, 300, 500, 350]}
],
"count": 2
}
```
- `bbox`: `[x1, y1, x2, y2]` normalized to 0-1000 scale
- To convert to pixels: `pixel_x = bbox_x / 1000 * image_width`
## Demo
Try the model on Hugging Face Spaces:
[takumi123xxx/pdfme-form-field-detector](https://huggingface.co/spaces/takumi123xxx/pdfme-form-field-detector)
## Cloud Deployment
### AWS SageMaker
```python
import boto3
import json
import base64
runtime = boto3.client("sagemaker-runtime", region_name="ap-northeast-1")
with open("document.png", "rb") as f:
image_base64 = base64.b64encode(f.read()).decode()
response = runtime.invoke_endpoint(
EndpointName="pdfme-form-detector-xxxxx",
ContentType="application/json",
Body=json.dumps({"inputs": image_base64})
)
result = json.loads(response["Body"].read().decode())
print(result)
```
### GCP Vertex AI
```python
from google.cloud import aiplatform
import base64
aiplatform.init(project="your-project-id", location="asia-northeast1")
endpoint = aiplatform.Endpoint("projects/xxx/locations/xxx/endpoints/xxx")
with open("document.png", "rb") as f:
image_base64 = base64.b64encode(f.read()).decode()
response = endpoint.predict(instances=[{"image_base64": image_base64}])
print(response.predictions)
```
### Azure AI Foundry
```python
import requests
import base64
endpoint_url = "https://pdfme-detector-xxxxx.japaneast.inference.ml.azure.com/score"
api_key = "your-api-key"
with open("document.png", "rb") as f:
image_base64 = base64.b64encode(f.read()).decode()
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
response = requests.post(
endpoint_url,
headers=headers,
json={"image_base64": image_base64}
)
print(response.json())
```
### Recommended Instances
| Service | Instance | GPU | VRAM | Cost/hour |
|---------|----------|-----|------|-----------|
| **AWS SageMaker** | ml.g5.xlarge | A10G | 24GB | ~$1.20 |
| **GCP Vertex AI** | n1-standard-8 + L4 | L4 | 24GB | ~$1.20 |
| **Azure AI Foundry** | Standard_NC4as_T4_v3 | T4 | 16GB | ~$1.10 |
For detailed deployment instructions, see the [GitHub repository](https://github.com/JapanMarketing-Dev/pdfme-fineturning/tree/main/deploy).
## Training Details
- **Base Model**: Qwen/Qwen3-VL-32B-Instruct
- **Epochs**: 3
- **Batch Size**: 1 (with gradient accumulation of 8)
- **Learning Rate**: 2e-4
- **LoRA Rank**: 16
- **LoRA Alpha**: 32
- **Quantization**: 4-bit NF4
- **Training Time**: ~2 hours on RTX PRO 6000 (95GB VRAM)
## Comparison: 8B vs 32B
| Aspect | 8B Model | 32B Model |
|--------|----------|-----------|
| Parameters | 8B | 32B (4x larger) |
| Final Loss | 5.60 | 5.59 |
| Recall | 18.08% | 13.56% |
| VRAM (4-bit) | ~20GB | ~40GB |
| Inference Speed | Faster | Slower |
**Conclusion**: With only 90 training samples, both models perform similarly. **Data quantity and diversity are the bottleneck**, not model size.
## Future Improvements
### Short-term
1. **Expand original dataset** - 100+ diverse document samples
2. **Reduce epochs** - 1-2 epochs may be sufficient for 32B
3. **Separate test set** - Evaluate on unseen documents
### Mid-term
4. **Field type classification** - Identify field types (name, address, date, etc.)
5. **Multi-turn dialogue** - Support conditional detection ("only detect name fields")
### Long-term
6. **Large-scale dataset** - 1000+ annotated samples across document types
7. **Active learning** - Human review → feedback → continuous improvement
## License
Apache 2.0
---
# PDFme フォームフィールド検出モデル(32B)
**日本の書類から、申請者が記入すべきフォーム欄を自動検出するモデル**
[Qwen3-VL-32B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-32B-Instruct)をQLoRAでファインチューニングし、申請書や届出書などの入力欄を検出します。
## このモデルでできること
書類の画像を入力すると、**申請者(顧客)が記入すべき欄**の位置(bbox)を検出します。
**職員が記入する欄**(受付番号、処理日など)は除外されます。
## モデル情報
| 項目 | 内容 |
|------|------|
| ベースモデル | Qwen/Qwen3-VL-32B-Instruct |
| 学習手法 | QLoRA(4bit量子化 + LoRA) |
| 学習データ | 90件(拡張データ) |
| 出力形式 | JSON(0-1000正規化されたbbox座標) |
## 性能評価
### 評価結果(IoU ≥ 0.5)
| 指標 | 32Bモデル | 8Bモデル | 説明 |
|------|-----------|----------|------|
| **Recall** | **13.56%** | 18.08% | 正解フィールドの検出率 |
| **Precision** | **5.24%** | 7.90% | 予測の正解率 |
| **平均IoU** | **0.2163** | 0.2209 | 予測と正解の重なり |
| マッチ数 | 24/177 | 32/177 | マッチした予測数 |
| 予測数 | 458 | 405 | 総予測数 |
### 学習曲線
| Epoch | Loss | 備考 |
|-------|------|------|
| 開始 | 18.74 | - |
| 0.5 | 11.13 | 急速に減少 |
| 1.0 | 6.72 | 安定化 |
| 2.0 | 5.75 | 収束傾向 |
| 3.0 | **5.59** | 最終 |
**Loss改善: 18.74 → 5.59(70%減少)**
### 重要な発見
32Bモデルは8Bモデルと同等の精度でした。**データセット(元10件)がボトルネック**であり、モデルサイズではありません。
## デモ
Hugging Face Spacesでお試しください:
[takumi123xxx/pdfme-form-field-detector](https://huggingface.co/spaces/takumi123xxx/pdfme-form-field-detector)
## クラウドデプロイ
### 推奨インスタンス
| サービス | インスタンス | GPU | VRAM | 料金/時間 |
|----------|-------------|-----|------|----------|
| **AWS SageMaker** | ml.g5.xlarge | A10G | 24GB | ~$1.20 |
| **GCP Vertex AI** | n1-standard-8 + L4 | L4 | 24GB | ~$1.20 |
| **Azure AI Foundry** | Standard_NC4as_T4_v3 | T4 | 16GB | ~$1.10 |
詳細なデプロイ手順は[GitHubリポジトリ](https://github.com/JapanMarketing-Dev/pdfme-fineturning/tree/main/deploy)を参照してください。
## 学習詳細
- **ベースモデル**: Qwen/Qwen3-VL-32B-Instruct
- **エポック数**: 3
- **バッチサイズ**: 1(勾配累積: 8)
- **学習率**: 2e-4
- **LoRAランク**: 16
- **LoRAアルファ**: 32
- **量子化**: 4bit NF4
- **学習時間**: RTX PRO 6000(95GB VRAM)で約2時間
## ライセンス
Apache 2.0
|