SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a sentence-transformers model finetuned from sentence-transformers/stsb-distilbert-base on the mnrl and cl datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/stsb-distilbert-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Datasets:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-mnrl-cl-multi")
sentences = [
'How fast is fast?',
'How does light travel so fast?',
'How do I copyright my books?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings)
print(similarities.shape)
Evaluation
Metrics
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.846 |
| cosine_accuracy_threshold |
0.7969 |
| cosine_f1 |
0.7791 |
| cosine_f1_threshold |
0.714 |
| cosine_precision |
0.6978 |
| cosine_recall |
0.882 |
| cosine_ap |
0.823 |
| dot_accuracy |
0.843 |
| dot_accuracy_threshold |
151.2908 |
| dot_f1 |
0.7661 |
| dot_f1_threshold |
143.7784 |
| dot_precision |
0.7238 |
| dot_recall |
0.8137 |
| dot_ap |
0.7946 |
| manhattan_accuracy |
0.838 |
| manhattan_accuracy_threshold |
194.9912 |
| manhattan_f1 |
0.7704 |
| manhattan_f1_threshold |
247.4978 |
| manhattan_precision |
0.6537 |
| manhattan_recall |
0.9379 |
| manhattan_ap |
0.815 |
| euclidean_accuracy |
0.841 |
| euclidean_accuracy_threshold |
9.0223 |
| euclidean_f1 |
0.7704 |
| euclidean_f1_threshold |
11.3852 |
| euclidean_precision |
0.6463 |
| euclidean_recall |
0.9534 |
| euclidean_ap |
0.8153 |
| max_accuracy |
0.846 |
| max_accuracy_threshold |
194.9912 |
| max_f1 |
0.7791 |
| max_f1_threshold |
247.4978 |
| max_precision |
0.7238 |
| max_recall |
0.9534 |
| max_ap |
0.823 |
Paraphrase Mining
| Metric |
Value |
| average_precision |
0.5889 |
| f1 |
0.5762 |
| precision |
0.5478 |
| recall |
0.6077 |
| threshold |
0.7729 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.963 |
| cosine_accuracy@3 |
0.9906 |
| cosine_accuracy@5 |
0.9944 |
| cosine_accuracy@10 |
0.9982 |
| cosine_precision@1 |
0.963 |
| cosine_precision@3 |
0.4285 |
| cosine_precision@5 |
0.2757 |
| cosine_precision@10 |
0.1449 |
| cosine_recall@1 |
0.83 |
| cosine_recall@3 |
0.959 |
| cosine_recall@5 |
0.9806 |
| cosine_recall@10 |
0.9926 |
| cosine_ndcg@10 |
0.9784 |
| cosine_mrr@10 |
0.9772 |
| cosine_map@100 |
0.9709 |
| dot_accuracy@1 |
0.9514 |
| dot_accuracy@3 |
0.9852 |
| dot_accuracy@5 |
0.991 |
| dot_accuracy@10 |
0.9968 |
| dot_precision@1 |
0.9514 |
| dot_precision@3 |
0.4247 |
| dot_precision@5 |
0.2736 |
| dot_precision@10 |
0.1446 |
| dot_recall@1 |
0.8194 |
| dot_recall@3 |
0.952 |
| dot_recall@5 |
0.9756 |
| dot_recall@10 |
0.9911 |
| dot_ndcg@10 |
0.9715 |
| dot_mrr@10 |
0.9693 |
| dot_map@100 |
0.9617 |
Training Details
Training Datasets
mnrl
cl
Evaluation Datasets
mnrl
cl
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
num_train_epochs: 1
warmup_ratio: 0.1
fp16: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: False
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: None
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
cl loss |
mnrl loss |
cosine_map@100 |
quora-duplicates-dev_average_precision |
quora-duplicates_max_ap |
| 0 |
0 |
- |
- |
- |
0.9245 |
0.4200 |
0.6890 |
| 0.0320 |
100 |
0.1634 |
- |
- |
- |
- |
- |
| 0.0640 |
200 |
0.1206 |
- |
- |
- |
- |
- |
| 0.0800 |
250 |
- |
0.0190 |
0.1469 |
0.9530 |
0.5068 |
0.7354 |
| 0.0960 |
300 |
0.1036 |
- |
- |
- |
- |
- |
| 0.1280 |
400 |
0.0836 |
- |
- |
- |
- |
- |
| 0.1599 |
500 |
0.0918 |
0.0180 |
0.1008 |
0.9553 |
0.5259 |
0.7643 |
| 0.1919 |
600 |
0.0784 |
- |
- |
- |
- |
- |
| 0.2239 |
700 |
0.0656 |
- |
- |
- |
- |
- |
| 0.2399 |
750 |
- |
0.0177 |
0.0905 |
0.9593 |
0.5305 |
0.7686 |
| 0.2559 |
800 |
0.0593 |
- |
- |
- |
- |
- |
| 0.2879 |
900 |
0.0534 |
- |
- |
- |
- |
- |
| 0.3199 |
1000 |
0.0612 |
0.0161 |
0.0736 |
0.9642 |
0.5512 |
0.7881 |
| 0.3519 |
1100 |
0.0572 |
- |
- |
- |
- |
- |
| 0.3839 |
1200 |
0.06 |
- |
- |
- |
- |
- |
| 0.3999 |
1250 |
- |
0.0158 |
0.0641 |
0.9649 |
0.5567 |
0.7983 |
| 0.4159 |
1300 |
0.0565 |
- |
- |
- |
- |
- |
| 0.4479 |
1400 |
0.0565 |
- |
- |
- |
- |
- |
| 0.4798 |
1500 |
0.0475 |
0.0154 |
0.0578 |
0.9645 |
0.5614 |
0.8062 |
| 0.5118 |
1600 |
0.0596 |
- |
- |
- |
- |
- |
| 0.5438 |
1700 |
0.0509 |
- |
- |
- |
- |
- |
| 0.5598 |
1750 |
- |
0.0150 |
0.0525 |
0.9674 |
0.5762 |
0.8092 |
| 0.5758 |
1800 |
0.0403 |
- |
- |
- |
- |
- |
| 0.6078 |
1900 |
0.0431 |
- |
- |
- |
- |
- |
| 0.6398 |
2000 |
0.0481 |
0.0150 |
0.0531 |
0.9689 |
0.5824 |
0.8128 |
| 0.6718 |
2100 |
0.05 |
- |
- |
- |
- |
- |
| 0.7038 |
2200 |
0.0468 |
- |
- |
- |
- |
- |
| 0.7198 |
2250 |
- |
0.0146 |
0.0486 |
0.9684 |
0.5756 |
0.8195 |
| 0.7358 |
2300 |
0.0436 |
- |
- |
- |
- |
- |
| 0.7678 |
2400 |
0.0409 |
- |
- |
- |
- |
- |
| 0.7997 |
2500 |
0.0391 |
0.0145 |
0.0454 |
0.9705 |
0.5822 |
0.8190 |
| 0.8317 |
2600 |
0.0412 |
- |
- |
- |
- |
- |
| 0.8637 |
2700 |
0.0373 |
- |
- |
- |
- |
- |
| 0.8797 |
2750 |
- |
0.0143 |
0.0451 |
0.9705 |
0.5889 |
0.8229 |
| 0.8957 |
2800 |
0.0428 |
- |
- |
- |
- |
- |
| 0.9277 |
2900 |
0.0419 |
- |
- |
- |
- |
- |
| 0.9597 |
3000 |
0.0376 |
0.0143 |
0.0435 |
0.9709 |
0.5889 |
0.8230 |
| 0.9917 |
3100 |
0.0366 |
- |
- |
- |
- |
- |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.084 kWh
- Carbon Emitted: 0.033 kg of CO2
- Hours Used: 0.399 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}