Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a sentence-transformers model finetuned from huudan123/model_stage2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("huudan123/final_model_main")
# Run inference
sentences = [
'Thật nực cười khi tôi thấy các hãng hàng không đôi khi yêu cầu tắt những thứ này.',
'Tôi rất tiếc khi nghe điều này Kelly.',
'Hàng loạt các cuộc tấn công Iraq giết chết ít nhất sáu người',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sts-evaluatorEmbeddingSimilarityEvaluator| Metric | Value |
|---|---|
| pearson_cosine | 0.0529 |
| spearman_cosine | 0.3363 |
| pearson_manhattan | 0.1549 |
| spearman_manhattan | 0.3374 |
| pearson_euclidean | 0.1553 |
| spearman_euclidean | 0.3361 |
| pearson_dot | 0.055 |
| spearman_dot | 0.0579 |
| pearson_max | 0.1553 |
| spearman_max | 0.3374 |
overwrite_output_dir: Trueeval_strategy: epochper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 2e-05num_train_epochs: 30warmup_ratio: 0.1fp16: Trueload_best_model_at_end: Truegradient_checkpointing: Trueoverwrite_output_dir: Truedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 30max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Truegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | loss | sts-evaluator_spearman_max |
|---|---|---|---|---|
| 0 | 0 | - | - | 0.6240 |
| 0.6234 | 500 | 0.0186 | - | - |
| 1.0 | 802 | - | 0.0215 | 0.7037 |
| 1.2469 | 1000 | 0.0071 | - | - |
| 1.8703 | 1500 | 0.0063 | - | - |
| 2.0 | 1604 | - | 0.0216 | 0.7184 |
| 2.4938 | 2000 | 0.0057 | - | - |
| 3.0 | 2406 | - | 0.0200 | 0.7298 |
| 3.1172 | 2500 | 0.0055 | - | - |
| 3.7406 | 3000 | 0.0052 | - | - |
| 4.0 | 3208 | - | 0.0175 | 0.7733 |
| 4.3641 | 3500 | 0.005 | - | - |
| 4.9875 | 4000 | 0.005 | - | - |
| 5.0 | 4010 | - | 0.0144 | 0.7820 |
| 5.6110 | 4500 | 0.0046 | - | - |
| 6.0 | 4812 | - | 0.0135 | 0.7839 |
| 6.2344 | 5000 | 0.0045 | - | - |
| 6.8579 | 5500 | 0.0043 | - | - |
| 7.0 | 5614 | - | 0.0132 | 0.7867 |
| 7.4813 | 6000 | 0.0041 | - | - |
| 8.0 | 6416 | - | 0.0113 | 0.7894 |
| 8.1047 | 6500 | 0.004 | - | - |
| 8.7282 | 7000 | 0.0037 | - | - |
| 9.0 | 7218 | - | 0.0105 | 0.7845 |
| 9.3516 | 7500 | 0.0036 | - | - |
| 9.9751 | 8000 | 0.0037 | - | - |
| 10.0 | 8020 | - | 0.0096 | 0.7963 |
| 10.5985 | 8500 | 0.0074 | - | - |
| 11.0 | 8822 | - | 0.2441 | 0.3470 |
| 11.2219 | 9000 | 0.0065 | - | - |
| 11.8454 | 9500 | 0.0063 | - | - |
| 12.0 | 9624 | - | 0.2443 | 0.2869 |
| 12.4688 | 10000 | 0.0062 | - | - |
| 13.0 | 10426 | - | 0.2446 | 0.2917 |
| 13.0923 | 10500 | 0.0061 | - | - |
| 13.7157 | 11000 | 0.006 | - | - |
| 14.0 | 11228 | - | 0.2446 | 0.3374 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
vinai/phobert-base-v2