SentenceTransformer based on huudan123/stage1
This is a sentence-transformers model finetuned from huudan123/stage1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: huudan123/stage1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("huudan123/stage2")
sentences = [
'bạn tiếp_tục nhập thông_tin cơ_sở dữ_liệu',
'bạn mọi thứ bạn bắt_đầu_từ',
'bạn tiếp_tục bạn nhập mọi thứ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.7133 |
| spearman_cosine |
0.714 |
| pearson_manhattan |
0.6924 |
| spearman_manhattan |
0.6987 |
| pearson_euclidean |
0.6928 |
| spearman_euclidean |
0.6988 |
| pearson_dot |
0.6562 |
| spearman_dot |
0.6553 |
| pearson_max |
0.7133 |
| spearman_max |
0.714 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir: True
eval_strategy: epoch
per_device_train_batch_size: 256
per_device_eval_batch_size: 256
num_train_epochs: 20
lr_scheduler_type: cosine
warmup_ratio: 0.05
fp16: True
load_best_model_at_end: True
gradient_checkpointing: True
All Hyperparameters
Click to expand
overwrite_output_dir: True
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 256
per_device_eval_batch_size: 256
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 20
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.05
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: True
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
sts-dev_spearman_cosine |
| 0 |
0 |
- |
- |
0.5307 |
| 0.0503 |
50 |
9.1742 |
- |
- |
| 0.1005 |
100 |
5.9716 |
- |
- |
| 0.1508 |
150 |
4.6737 |
- |
- |
| 0.2010 |
200 |
3.2819 |
- |
- |
| 0.2513 |
250 |
2.8832 |
- |
- |
| 0.3015 |
300 |
2.7327 |
- |
- |
| 0.3518 |
350 |
2.6305 |
- |
- |
| 0.4020 |
400 |
2.6239 |
- |
- |
| 0.4523 |
450 |
2.5527 |
- |
- |
| 0.5025 |
500 |
2.5271 |
- |
- |
| 0.5528 |
550 |
2.4904 |
- |
- |
| 0.6030 |
600 |
2.4987 |
- |
- |
| 0.6533 |
650 |
2.4009 |
- |
- |
| 0.7035 |
700 |
2.3944 |
- |
- |
| 0.7538 |
750 |
2.5054 |
- |
- |
| 0.8040 |
800 |
2.3989 |
- |
- |
| 0.8543 |
850 |
2.4019 |
- |
- |
| 0.9045 |
900 |
2.3638 |
- |
- |
| 0.9548 |
950 |
2.3478 |
- |
- |
| 1.0 |
995 |
- |
3.0169 |
0.7322 |
| 1.0050 |
1000 |
2.4424 |
- |
- |
| 1.0553 |
1050 |
2.2478 |
- |
- |
| 1.1055 |
1100 |
2.2448 |
- |
- |
| 1.1558 |
1150 |
2.205 |
- |
- |
| 1.2060 |
1200 |
2.1811 |
- |
- |
| 1.2563 |
1250 |
2.1794 |
- |
- |
| 1.3065 |
1300 |
2.1495 |
- |
- |
| 1.3568 |
1350 |
2.1548 |
- |
- |
| 1.4070 |
1400 |
2.1299 |
- |
- |
| 1.4573 |
1450 |
2.1335 |
- |
- |
| 1.5075 |
1500 |
2.1388 |
- |
- |
| 1.5578 |
1550 |
2.0999 |
- |
- |
| 1.6080 |
1600 |
2.0859 |
- |
- |
| 1.6583 |
1650 |
2.0959 |
- |
- |
| 1.7085 |
1700 |
2.0334 |
- |
- |
| 1.7588 |
1750 |
2.0647 |
- |
- |
| 1.8090 |
1800 |
2.0261 |
- |
- |
| 1.8593 |
1850 |
2.0133 |
- |
- |
| 1.9095 |
1900 |
2.0517 |
- |
- |
| 1.9598 |
1950 |
2.0152 |
- |
- |
| 2.0 |
1990 |
- |
3.1210 |
0.7187 |
| 2.0101 |
2000 |
1.924 |
- |
- |
| 2.0603 |
2050 |
1.7472 |
- |
- |
| 2.1106 |
2100 |
1.7485 |
- |
- |
| 2.1608 |
2150 |
1.7536 |
- |
- |
| 2.2111 |
2200 |
1.751 |
- |
- |
| 2.2613 |
2250 |
1.7172 |
- |
- |
| 2.3116 |
2300 |
1.7269 |
- |
- |
| 2.3618 |
2350 |
1.7352 |
- |
- |
| 2.4121 |
2400 |
1.7019 |
- |
- |
| 2.4623 |
2450 |
1.7278 |
- |
- |
| 2.5126 |
2500 |
1.7046 |
- |
- |
| 2.5628 |
2550 |
1.6962 |
- |
- |
| 2.6131 |
2600 |
1.6881 |
- |
- |
| 2.6633 |
2650 |
1.6806 |
- |
- |
| 2.7136 |
2700 |
1.6614 |
- |
- |
| 2.7638 |
2750 |
1.6918 |
- |
- |
| 2.8141 |
2800 |
1.6794 |
- |
- |
| 2.8643 |
2850 |
1.6708 |
- |
- |
| 2.9146 |
2900 |
1.6531 |
- |
- |
| 2.9648 |
2950 |
1.6236 |
- |
- |
| 3.0 |
2985 |
- |
3.2556 |
0.7140 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}