Mistral 12B โ€” CPT (Continual Pretraining with LoRA)

Model type: Causal Language Model
Base model: mistralai/Mistral-Nemo-Instruct-2407
License: Apache 2.0
Framework: Axolotl


Overview

mistral-12b-cpt is a continual-pretrained version of the Mistral-12B Nemo Instruct model.
This CPT phase extends the modelโ€™s factual and energy domain understanding using scientific, governmental, news, and encyclopedic text.

Training was executed on the Leonardo EuroHPC system using Axolotl with DeepSpeed ZeRO-1 for efficient large-scale distributed fine-tuning.


Training Setup

Objective: Unsupervised continual pretraining (language modeling)
Adapter type: LoRA
Precision: bfloat16
Hardware: 8 nodes ร— 2 ร— NVIDIA A100 64 GB GPUs
Framework: Axolotl + DeepSpeed + PyTorch 2.5.1 + CUDA 12.1
Runtime: 24 h
Checkpoints: 5 per epoch


Dataset

Dataset Description
arxiv.jsonl Scientific and technical papers
gov.jsonl Government and policy documents
news.jsonl News articles
wiki.jsonl Wikipedia text

Hyperparameters

Parameter Value
Sequence length 2048
Micro batch size 2
Gradient accumulation 2
Epochs 10
Max steps 10000
Learning rate 0.0002
LR scheduler cosine
Optimizer AdamW (8-bit)
Warmup steps 10
Weight decay 0.0
LoRA rank (r) 16
LoRA alpha 32
LoRA dropout 0.05
LoRA targets q_proj, k_proj, v_proj, o_proj
Gradient checkpointing โœ…
Flash attention โœ…
Loss watchdog (threshold/patience) 5.0 / 3

Tokenizer

Tokenizer type: AutoTokenizer
Pad token: <|end_of_text|>

Downloads last month
5
Safetensors
Model size
12B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ubitech-edg/mistral-12b-cpt

Adapter
(53)
this model
Adapters
1 model

Dataset used to train ubitech-edg/mistral-12b-cpt