Mistral 12B โ€” SFT (Supervised Fine-Tuning on Synthetic QA)

Model type: Causal Language Model
Base model: mistralai/Mistral-Nemo-Instruct-2407
License: Apache 2.0
Framework: Axolotl


Overview

mistral-12b-sft is a supervised fine-tuned variant of Mistral-12B trained on high-quality synthetic QA data.
This SFT phase enhances instruction following, factual reasoning, and conversational ability while maintaining model efficiency via 8-bit LoRA adapters.

Training was conducted on Leonardo EuroHPC.


Training Setup

Objective: Supervised fine-tuning (instruction-following QA)
Adapter: LoRA + 8-bit base
Precision: bfloat16
Hardware: 8 ร— 2 ร— A100 64 GB
Framework: Axolotl + DeepSpeed + PyTorch 2.5.1 + CUDA 12.1
Runtime: ~6 h
Validation: 30 %


Dataset

Dataset Type Description
axolotl_deduplicated_synthetic_qa.jsonl alpaca_chat.load_qa Synthetic instructionโ€“response pairs for QA and chat fine-tuning

Hyperparameters

Parameter Value
Sequence length 2048
Micro batch size 2
Gradient accumulation 2
Epochs 1
Learning rate 0.0002
LR scheduler cosine
Optimizer AdamW (8-bit)
Warmup steps 10
Weight decay 0.0
LoRA rank (r) 16
LoRA alpha 32
LoRA dropout 0.05
LoRA targets q_proj, k_proj, v_proj, o_proj
Gradient checkpointing โœ…
Flash attention โœ…
Auto-resume โœ…
Loss watchdog threshold 5.0, patience 3

Tokenizer

Tokenizer type: AutoTokenizer
Pad token: <|end_of_text|>

Downloads last month
5
Safetensors
Model size
12B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ubitech-edg/mistral-12b-sft