File size: 4,507 Bytes
084f828
 
be4162b
 
 
 
 
 
 
bfd1982
be4162b
 
 
 
bfd1982
be4162b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfd1982
be4162b
 
bfd1982
 
be4162b
bfd1982
be4162b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfd1982
be4162b
 
 
 
 
 
 
 
 
 
 
 
fa9d1dd
be4162b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfd1982
be4162b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
084f828
be4162b
 
084f828
be4162b
 
bfd1982
be4162b
 
 
 
084f828
be4162b
 
bfd1982
 
be4162b
bfd1982
be4162b
 
 
 
 
084f828
be4162b
 
 
 
 
 
 
fa9d1dd
bfd1982
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
accumulative_counts = 2
batch_size = 1
betas = (
    0.9,
    0.999,
)
custom_hooks = [
    dict(
        tokenizer=dict(
            pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
            trust_remote_code=True,
            type='transformers.AutoTokenizer.from_pretrained'),
        type='xtuner.engine.hooks.DatasetInfoHook'),
]
data_path = '/home/wangqun/data/layout_ocr_multi.json'
dataloader_num_workers = 4
default_hooks = dict(
    checkpoint=dict(
        by_epoch=False,
        interval=1000,
        max_keep_ckpts=-1,
        save_optimizer=False,
        type='mmengine.hooks.CheckpointHook'),
    logger=dict(
        interval=10,
        log_metric_by_epoch=False,
        type='mmengine.hooks.LoggerHook'),
    param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
    sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
    timer=dict(type='mmengine.hooks.IterTimerHook'))
env_cfg = dict(
    cudnn_benchmark=False,
    dist_cfg=dict(backend='nccl'),
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
image_folder = '/'
launcher = 'none'
llava_dataset = dict(
    data_paths='/home/wangqun/data/layout_ocr_multi.json',
    image_folders='/',
    max_length=8192,
    model_path='/data/wangqun/models/InternVL2_5-2B',
    template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
    type='xtuner.dataset.InternVL_V1_5_Dataset')
load_from = None
log_level = 'DEBUG'
log_processor = dict(by_epoch=False)
lr = 2e-05
max_epochs = 4
max_length = 8192
max_norm = 1
model = dict(
    freeze_llm=True,
    freeze_visual_encoder=True,
    llm_lora=dict(
        lora_alpha=256,
        lora_dropout=0.05,
        r=128,
        target_modules=None,
        task_type='CAUSAL_LM',
        type='peft.LoraConfig'),
    model_path='/data/wangqun/models/InternVL2_5-2B',
    quantization_llm=True,
    quantization_vit=False,
    type='xtuner.model.InternVL_V1_5')
optim_type = 'torch.optim.AdamW'
optim_wrapper = dict(
    optimizer=dict(
        betas=(
            0.9,
            0.999,
        ),
        lr=2e-05,
        type='torch.optim.AdamW',
        weight_decay=0.05),
    type='DeepSpeedOptimWrapper')
param_scheduler = [
    dict(
        begin=0,
        by_epoch=True,
        convert_to_iter_based=True,
        end=0.12,
        start_factor=1e-05,
        type='mmengine.optim.LinearLR'),
    dict(
        begin=0.12,
        by_epoch=True,
        convert_to_iter_based=True,
        end=4,
        eta_min=0.0,
        type='mmengine.optim.CosineAnnealingLR'),
]
path = '/data/wangqun/models/InternVL2_5-2B'
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
randomness = dict(deterministic=False, seed=None)
resume = False
runner_type = 'FlexibleRunner'
save_steps = 1000
save_total_limit = -1
strategy = dict(
    config=dict(
        bf16=dict(enabled=True),
        fp16=dict(enabled=False, initial_scale_power=16),
        gradient_accumulation_steps='auto',
        gradient_clipping='auto',
        train_micro_batch_size_per_gpu='auto',
        zero_allow_untested_optimizer=True,
        zero_force_ds_cpu_optimizer=False,
        zero_optimization=dict(overlap_comm=True, stage=2)),
    exclude_frozen_parameters=True,
    gradient_accumulation_steps=2,
    gradient_clipping=1,
    sequence_parallel_size=1,
    train_micro_batch_size_per_gpu=1,
    type='xtuner.engine.DeepSpeedStrategy')
tokenizer = dict(
    pretrained_model_name_or_path='/data/wangqun/models/InternVL2_5-2B',
    trust_remote_code=True,
    type='transformers.AutoTokenizer.from_pretrained')
train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
train_dataloader = dict(
    batch_size=1,
    collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
    dataset=dict(
        data_paths='/home/wangqun/data/layout_ocr_multi.json',
        image_folders='/',
        max_length=8192,
        model_path='/data/wangqun/models/InternVL2_5-2B',
        template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
        type='xtuner.dataset.InternVL_V1_5_Dataset'),
    num_workers=4,
    sampler=dict(
        length_property='modality_length',
        per_device_batch_size=2,
        type='xtuner.dataset.samplers.LengthGroupedSampler'))
visualizer = dict(
    type='mmengine.visualization.Visualizer',
    vis_backends=[
        dict(type='mmengine.visualization.TensorboardVisBackend'),
    ])
warmup_ratio = 0.03
weight_decay = 0.05
work_dir = '/home/wangqun/work_dirs/internvl_ft_run_14_filter'