Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +8 -0
- internvl_ft_run_10_filter/iter_4000.pth +3 -0
- internvl_ft_run_10_filter/last_checkpoint +1 -0
- internvl_ft_run_12_filter/20250304_104043/20250304_104043.log +195 -0
- internvl_ft_run_12_filter/20250304_104403/20250304_104403.log +203 -0
- internvl_ft_run_12_filter/20250304_104403/vis_data/events.out.tfevents.1741056245.intern-studio-40019814.17053.0 +3 -0
- internvl_ft_run_12_filter/20250304_111639/20250304_111639.log +0 -0
- internvl_ft_run_12_filter/20250304_111639/vis_data/events.out.tfevents.1741058201.intern-studio-40019814.23140.0 +3 -0
- internvl_ft_run_12_filter/20250304_112305/20250304_112305.log +0 -0
- internvl_ft_run_12_filter/20250304_112305/vis_data/events.out.tfevents.1741058586.intern-studio-40019814.25156.0 +3 -0
- internvl_ft_run_12_filter/20250304_112538/20250304_112538.log +0 -0
- internvl_ft_run_12_filter/20250304_112538/vis_data/events.out.tfevents.1741058739.intern-studio-40019814.26649.0 +3 -0
- internvl_ft_run_12_filter/20250304_113017/20250304_113017.log +633 -0
- internvl_ft_run_12_filter/20250304_113017/vis_data/events.out.tfevents.1741059019.intern-studio-40019814.28433.0 +3 -0
- internvl_ft_run_12_filter/20250304_114757/20250304_114757.log +0 -0
- internvl_ft_run_12_filter/20250304_114757/vis_data/events.out.tfevents.1741060079.intern-studio-40019814.34025.0 +3 -0
- internvl_ft_run_12_filter/internvl_v2_internlm2_2b_qlora_finetune_copy.py +145 -0
- internvl_ft_run_12_filter/iter_1000.pth +3 -0
- internvl_ft_run_12_filter/iter_2000.pth +3 -0
- internvl_ft_run_12_filter/iter_3000.pth +3 -0
- internvl_ft_run_12_filter/iter_4000.pth +3 -0
- internvl_ft_run_12_filter/iter_5000.pth +3 -0
- internvl_ft_run_12_filter/iter_6000.pth +3 -0
- internvl_ft_run_12_filter/iter_7000.pth +3 -0
- internvl_ft_run_12_filter/iter_8000.pth +3 -0
- internvl_ft_run_12_filter/iter_9000.pth +3 -0
- internvl_ft_run_12_filter/iter_9612.pth +3 -0
- internvl_ft_run_12_filter/last_checkpoint +1 -0
- internvl_ft_run_13_filter/20250304_121519/20250304_121519.log +464 -0
- internvl_ft_run_13_filter/20250304_121519/vis_data/events.out.tfevents.1741061720.intern-studio-40019814.41268.0 +3 -0
- internvl_ft_run_13_filter/20250304_213711/20250304_213711.log +0 -0
- internvl_ft_run_13_filter/20250304_213711/vis_data/events.out.tfevents.1741095432.intern-studio-40019814.159243.0 +3 -0
- internvl_ft_run_13_filter/internvl_v2_internlm2_2b_qlora_finetune_copy.py +146 -0
- internvl_ft_run_13_filter/iter_1000.pth +3 -0
- internvl_ft_run_13_filter/iter_10000.pth +3 -0
- internvl_ft_run_13_filter/iter_11000.pth +3 -0
- internvl_ft_run_13_filter/iter_12000.pth +3 -0
- internvl_ft_run_13_filter/iter_13000.pth +3 -0
- internvl_ft_run_13_filter/iter_14000.pth +3 -0
- internvl_ft_run_13_filter/iter_15000.pth +3 -0
- internvl_ft_run_13_filter/iter_16000.pth +3 -0
- internvl_ft_run_13_filter/iter_17000.pth +3 -0
- internvl_ft_run_13_filter/iter_18000.pth +3 -0
- internvl_ft_run_13_filter/iter_19000.pth +3 -0
- internvl_ft_run_13_filter/iter_19224.pth +3 -0
- internvl_ft_run_13_filter/iter_2000.pth +3 -0
- internvl_ft_run_13_filter/iter_3000.pth +3 -0
- internvl_ft_run_13_filter/iter_4000.pth +3 -0
- internvl_ft_run_13_filter/iter_5000.pth +3 -0
- internvl_ft_run_13_filter/iter_6000.pth +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
llava_ft/20240623_134854/vis_data/wandb/run-20240623_134900-1tj91a85/run-1tj91a85.wandb filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
llava_ft/20240623_135747/vis_data/wandb/run-20240623_135753-haxnz4ri/run-haxnz4ri.wandb filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
llava_ft/20240623_141103/vis_data/wandb/run-20240623_141111-j57x5qxb/run-j57x5qxb.wandb filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
llava_ft/20240623_150212/vis_data/wandb/run-20240623_150217-mlt4pykm/run-mlt4pykm.wandb filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
llava_ft/20240623_151455/vis_data/wandb/run-20240623_151501-nv52dul7/run-nv52dul7.wandb filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
llava_ft/20240623_153346/vis_data/wandb/run-20240623_153353-q9ka8o44/run-q9ka8o44.wandb filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
llava_ft/20240623_191953/vis_data/wandb/run-20240623_191959-ljo9rur3/run-ljo9rur3.wandb filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
llava_ft/20240623_193616/vis_data/wandb/run-20240623_193622-jigkwuih/run-jigkwuih.wandb filter=lfs diff=lfs merge=lfs -text
|
internvl_ft_run_10_filter/iter_4000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:83c4428c4241b5c7f332d93048ca22713c8b704dab05f6f747be468ed4a705e6
|
| 3 |
+
size 300000
|
internvl_ft_run_10_filter/last_checkpoint
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
/root/wangqun/work_dirs/internvl_ft_run_10_filter/iter_4608.pth
|
internvl_ft_run_12_filter/20250304_104043/20250304_104043.log
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2025/03/04 10:40:44 - mmengine - DEBUG - An `DeepSpeedStrategy` instance is built from registry, and its implementation can be found in xtuner.engine._strategy.deepspeed
|
| 2 |
+
2025/03/04 10:40:44 - mmengine - INFO -
|
| 3 |
+
------------------------------------------------------------
|
| 4 |
+
System environment:
|
| 5 |
+
sys.platform: linux
|
| 6 |
+
Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
|
| 7 |
+
CUDA available: True
|
| 8 |
+
MUSA available: False
|
| 9 |
+
numpy_random_seed: 1685007727
|
| 10 |
+
GPU 0: NVIDIA A100-SXM4-80GB
|
| 11 |
+
CUDA_HOME: /usr/local/cuda
|
| 12 |
+
NVCC: Cuda compilation tools, release 12.2, V12.2.140
|
| 13 |
+
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
|
| 14 |
+
PyTorch: 2.4.1+cu121
|
| 15 |
+
PyTorch compiling details: PyTorch built with:
|
| 16 |
+
- GCC 9.3
|
| 17 |
+
- C++ Version: 201703
|
| 18 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
|
| 19 |
+
- Intel(R) MKL-DNN v3.4.2 (Git Hash 1137e04ec0b5251ca2b4400a4fd3c667ce843d67)
|
| 20 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 21 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 22 |
+
- NNPACK is enabled
|
| 23 |
+
- CPU capability usage: AVX512
|
| 24 |
+
- CUDA Runtime 12.1
|
| 25 |
+
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
|
| 26 |
+
- CuDNN 90.1 (built against CUDA 12.4)
|
| 27 |
+
- Magma 2.6.1
|
| 28 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.4.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
|
| 29 |
+
|
| 30 |
+
TorchVision: 0.19.1+cu121
|
| 31 |
+
OpenCV: 4.9.0
|
| 32 |
+
MMEngine: 0.10.6
|
| 33 |
+
|
| 34 |
+
Runtime environment:
|
| 35 |
+
launcher: none
|
| 36 |
+
randomness: {'seed': None, 'deterministic': False}
|
| 37 |
+
cudnn_benchmark: False
|
| 38 |
+
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
|
| 39 |
+
dist_cfg: {'backend': 'nccl'}
|
| 40 |
+
seed: None
|
| 41 |
+
deterministic: False
|
| 42 |
+
Distributed launcher: none
|
| 43 |
+
Distributed training: False
|
| 44 |
+
GPU number: 1
|
| 45 |
+
------------------------------------------------------------
|
| 46 |
+
|
| 47 |
+
2025/03/04 10:40:44 - mmengine - INFO - Config:
|
| 48 |
+
accumulative_counts = 2
|
| 49 |
+
batch_size = 1
|
| 50 |
+
betas = (
|
| 51 |
+
0.9,
|
| 52 |
+
0.999,
|
| 53 |
+
)
|
| 54 |
+
custom_hooks = [
|
| 55 |
+
dict(
|
| 56 |
+
tokenizer=dict(
|
| 57 |
+
pretrained_model_name_or_path='/root/models/InternVL2_2B',
|
| 58 |
+
trust_remote_code=True,
|
| 59 |
+
type='transformers.AutoTokenizer.from_pretrained'),
|
| 60 |
+
type='xtuner.engine.hooks.DatasetInfoHook'),
|
| 61 |
+
]
|
| 62 |
+
data_path = '/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json'
|
| 63 |
+
data_root = '/root/data/tempData/screenshot_od'
|
| 64 |
+
dataloader_num_workers = 4
|
| 65 |
+
default_hooks = dict(
|
| 66 |
+
checkpoint=dict(
|
| 67 |
+
by_epoch=False,
|
| 68 |
+
interval=1000,
|
| 69 |
+
max_keep_ckpts=-1,
|
| 70 |
+
save_optimizer=False,
|
| 71 |
+
type='mmengine.hooks.CheckpointHook'),
|
| 72 |
+
logger=dict(
|
| 73 |
+
interval=10,
|
| 74 |
+
log_metric_by_epoch=False,
|
| 75 |
+
type='mmengine.hooks.LoggerHook'),
|
| 76 |
+
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
|
| 77 |
+
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
|
| 78 |
+
timer=dict(type='mmengine.hooks.IterTimerHook'))
|
| 79 |
+
env_cfg = dict(
|
| 80 |
+
cudnn_benchmark=False,
|
| 81 |
+
dist_cfg=dict(backend='nccl'),
|
| 82 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 83 |
+
image_folder = '/root/data/tempData/screenshot_odimages'
|
| 84 |
+
launcher = 'none'
|
| 85 |
+
llava_dataset = dict(
|
| 86 |
+
data_paths='/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json',
|
| 87 |
+
image_folders='/root/data/tempData/screenshot_odimages',
|
| 88 |
+
max_length=8192,
|
| 89 |
+
model_path='/root/models/InternVL2_2B',
|
| 90 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 91 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset')
|
| 92 |
+
load_from = None
|
| 93 |
+
log_level = 'DEBUG'
|
| 94 |
+
log_processor = dict(by_epoch=False)
|
| 95 |
+
lr = 2e-05
|
| 96 |
+
max_epochs = 4
|
| 97 |
+
max_length = 8192
|
| 98 |
+
max_norm = 1
|
| 99 |
+
model = dict(
|
| 100 |
+
freeze_llm=True,
|
| 101 |
+
freeze_visual_encoder=True,
|
| 102 |
+
llm_lora=dict(
|
| 103 |
+
lora_alpha=256,
|
| 104 |
+
lora_dropout=0.05,
|
| 105 |
+
r=128,
|
| 106 |
+
target_modules=None,
|
| 107 |
+
task_type='CAUSAL_LM',
|
| 108 |
+
type='peft.LoraConfig'),
|
| 109 |
+
model_path='/root/models/InternVL2_2B',
|
| 110 |
+
quantization_llm=True,
|
| 111 |
+
quantization_vit=False,
|
| 112 |
+
type='xtuner.model.InternVL_V1_5')
|
| 113 |
+
optim_type = 'torch.optim.AdamW'
|
| 114 |
+
optim_wrapper = dict(
|
| 115 |
+
optimizer=dict(
|
| 116 |
+
betas=(
|
| 117 |
+
0.9,
|
| 118 |
+
0.999,
|
| 119 |
+
),
|
| 120 |
+
lr=2e-05,
|
| 121 |
+
type='torch.optim.AdamW',
|
| 122 |
+
weight_decay=0.05),
|
| 123 |
+
type='DeepSpeedOptimWrapper')
|
| 124 |
+
param_scheduler = [
|
| 125 |
+
dict(
|
| 126 |
+
begin=0,
|
| 127 |
+
by_epoch=True,
|
| 128 |
+
convert_to_iter_based=True,
|
| 129 |
+
end=0.12,
|
| 130 |
+
start_factor=1e-05,
|
| 131 |
+
type='mmengine.optim.LinearLR'),
|
| 132 |
+
dict(
|
| 133 |
+
begin=0.12,
|
| 134 |
+
by_epoch=True,
|
| 135 |
+
convert_to_iter_based=True,
|
| 136 |
+
end=4,
|
| 137 |
+
eta_min=0.0,
|
| 138 |
+
type='mmengine.optim.CosineAnnealingLR'),
|
| 139 |
+
]
|
| 140 |
+
path = '/root/models/InternVL2_2B'
|
| 141 |
+
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
|
| 142 |
+
randomness = dict(deterministic=False, seed=None)
|
| 143 |
+
resume = False
|
| 144 |
+
runner_type = 'FlexibleRunner'
|
| 145 |
+
save_steps = 1000
|
| 146 |
+
save_total_limit = -1
|
| 147 |
+
strategy = dict(
|
| 148 |
+
config=dict(
|
| 149 |
+
bf16=dict(enabled=True),
|
| 150 |
+
fp16=dict(enabled=False, initial_scale_power=16),
|
| 151 |
+
gradient_accumulation_steps='auto',
|
| 152 |
+
gradient_clipping='auto',
|
| 153 |
+
train_micro_batch_size_per_gpu='auto',
|
| 154 |
+
zero_allow_untested_optimizer=True,
|
| 155 |
+
zero_force_ds_cpu_optimizer=False,
|
| 156 |
+
zero_optimization=dict(overlap_comm=True, stage=2)),
|
| 157 |
+
exclude_frozen_parameters=True,
|
| 158 |
+
gradient_accumulation_steps=2,
|
| 159 |
+
gradient_clipping=1,
|
| 160 |
+
sequence_parallel_size=1,
|
| 161 |
+
train_micro_batch_size_per_gpu=1,
|
| 162 |
+
type='xtuner.engine.DeepSpeedStrategy')
|
| 163 |
+
tokenizer = dict(
|
| 164 |
+
pretrained_model_name_or_path='/root/models/InternVL2_2B',
|
| 165 |
+
trust_remote_code=True,
|
| 166 |
+
type='transformers.AutoTokenizer.from_pretrained')
|
| 167 |
+
train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
|
| 168 |
+
train_dataloader = dict(
|
| 169 |
+
batch_size=1,
|
| 170 |
+
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
|
| 171 |
+
dataset=dict(
|
| 172 |
+
data_paths=
|
| 173 |
+
'/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json',
|
| 174 |
+
image_folders='/root/data/tempData/screenshot_odimages',
|
| 175 |
+
max_length=8192,
|
| 176 |
+
model_path='/root/models/InternVL2_2B',
|
| 177 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 178 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset'),
|
| 179 |
+
num_workers=4,
|
| 180 |
+
sampler=dict(
|
| 181 |
+
length_property='modality_length',
|
| 182 |
+
per_device_batch_size=2,
|
| 183 |
+
type='xtuner.dataset.samplers.LengthGroupedSampler'))
|
| 184 |
+
visualizer = dict(
|
| 185 |
+
type='mmengine.visualization.Visualizer',
|
| 186 |
+
vis_backends=[
|
| 187 |
+
dict(type='mmengine.visualization.TensorboardVisBackend'),
|
| 188 |
+
])
|
| 189 |
+
warmup_ratio = 0.03
|
| 190 |
+
weight_decay = 0.05
|
| 191 |
+
work_dir = '/root/wangqun/work_dirs/internvl_ft_run_12_filter'
|
| 192 |
+
|
| 193 |
+
2025/03/04 10:40:44 - mmengine - DEBUG - An `TensorboardVisBackend` instance is built from registry, and its implementation can be found in mmengine.visualization.vis_backend
|
| 194 |
+
2025/03/04 10:40:44 - mmengine - DEBUG - An `Visualizer` instance is built from registry, and its implementation can be found in mmengine.visualization.visualizer
|
| 195 |
+
2025/03/04 10:40:44 - mmengine - DEBUG - Attribute `_env_initialized` is not defined in <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'> or `<class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized is False, `_init_env` will be called and <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized will be set to True
|
internvl_ft_run_12_filter/20250304_104403/20250304_104403.log
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2025/03/04 10:44:03 - mmengine - DEBUG - An `DeepSpeedStrategy` instance is built from registry, and its implementation can be found in xtuner.engine._strategy.deepspeed
|
| 2 |
+
2025/03/04 10:44:03 - mmengine - INFO -
|
| 3 |
+
------------------------------------------------------------
|
| 4 |
+
System environment:
|
| 5 |
+
sys.platform: linux
|
| 6 |
+
Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
|
| 7 |
+
CUDA available: True
|
| 8 |
+
MUSA available: False
|
| 9 |
+
numpy_random_seed: 1125505633
|
| 10 |
+
GPU 0: NVIDIA A100-SXM4-80GB
|
| 11 |
+
CUDA_HOME: /usr/local/cuda
|
| 12 |
+
NVCC: Cuda compilation tools, release 12.2, V12.2.140
|
| 13 |
+
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
|
| 14 |
+
PyTorch: 2.4.1+cu121
|
| 15 |
+
PyTorch compiling details: PyTorch built with:
|
| 16 |
+
- GCC 9.3
|
| 17 |
+
- C++ Version: 201703
|
| 18 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
|
| 19 |
+
- Intel(R) MKL-DNN v3.4.2 (Git Hash 1137e04ec0b5251ca2b4400a4fd3c667ce843d67)
|
| 20 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 21 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 22 |
+
- NNPACK is enabled
|
| 23 |
+
- CPU capability usage: AVX512
|
| 24 |
+
- CUDA Runtime 12.1
|
| 25 |
+
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
|
| 26 |
+
- CuDNN 90.1 (built against CUDA 12.4)
|
| 27 |
+
- Magma 2.6.1
|
| 28 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.4.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
|
| 29 |
+
|
| 30 |
+
TorchVision: 0.19.1+cu121
|
| 31 |
+
OpenCV: 4.9.0
|
| 32 |
+
MMEngine: 0.10.6
|
| 33 |
+
|
| 34 |
+
Runtime environment:
|
| 35 |
+
launcher: none
|
| 36 |
+
randomness: {'seed': None, 'deterministic': False}
|
| 37 |
+
cudnn_benchmark: False
|
| 38 |
+
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
|
| 39 |
+
dist_cfg: {'backend': 'nccl'}
|
| 40 |
+
seed: None
|
| 41 |
+
deterministic: False
|
| 42 |
+
Distributed launcher: none
|
| 43 |
+
Distributed training: False
|
| 44 |
+
GPU number: 1
|
| 45 |
+
------------------------------------------------------------
|
| 46 |
+
|
| 47 |
+
2025/03/04 10:44:04 - mmengine - INFO - Config:
|
| 48 |
+
accumulative_counts = 2
|
| 49 |
+
batch_size = 1
|
| 50 |
+
betas = (
|
| 51 |
+
0.9,
|
| 52 |
+
0.999,
|
| 53 |
+
)
|
| 54 |
+
custom_hooks = [
|
| 55 |
+
dict(
|
| 56 |
+
tokenizer=dict(
|
| 57 |
+
pretrained_model_name_or_path='/root/models/InternVL2_2B',
|
| 58 |
+
trust_remote_code=True,
|
| 59 |
+
type='transformers.AutoTokenizer.from_pretrained'),
|
| 60 |
+
type='xtuner.engine.hooks.DatasetInfoHook'),
|
| 61 |
+
]
|
| 62 |
+
data_path = '/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json'
|
| 63 |
+
data_root = '/root/data/tempData/screenshot_od'
|
| 64 |
+
dataloader_num_workers = 4
|
| 65 |
+
default_hooks = dict(
|
| 66 |
+
checkpoint=dict(
|
| 67 |
+
by_epoch=False,
|
| 68 |
+
interval=1000,
|
| 69 |
+
max_keep_ckpts=-1,
|
| 70 |
+
save_optimizer=False,
|
| 71 |
+
type='mmengine.hooks.CheckpointHook'),
|
| 72 |
+
logger=dict(
|
| 73 |
+
interval=10,
|
| 74 |
+
log_metric_by_epoch=False,
|
| 75 |
+
type='mmengine.hooks.LoggerHook'),
|
| 76 |
+
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
|
| 77 |
+
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
|
| 78 |
+
timer=dict(type='mmengine.hooks.IterTimerHook'))
|
| 79 |
+
env_cfg = dict(
|
| 80 |
+
cudnn_benchmark=False,
|
| 81 |
+
dist_cfg=dict(backend='nccl'),
|
| 82 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 83 |
+
image_folder = '/root/data/tempData/screenshot_odimages'
|
| 84 |
+
launcher = 'none'
|
| 85 |
+
llava_dataset = dict(
|
| 86 |
+
data_paths='/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json',
|
| 87 |
+
image_folders='/root/data/tempData/screenshot_odimages',
|
| 88 |
+
max_length=8192,
|
| 89 |
+
model_path='/root/models/InternVL2_2B',
|
| 90 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 91 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset')
|
| 92 |
+
load_from = None
|
| 93 |
+
log_level = 'DEBUG'
|
| 94 |
+
log_processor = dict(by_epoch=False)
|
| 95 |
+
lr = 2e-05
|
| 96 |
+
max_epochs = 4
|
| 97 |
+
max_length = 8192
|
| 98 |
+
max_norm = 1
|
| 99 |
+
model = dict(
|
| 100 |
+
freeze_llm=True,
|
| 101 |
+
freeze_visual_encoder=True,
|
| 102 |
+
llm_lora=dict(
|
| 103 |
+
lora_alpha=256,
|
| 104 |
+
lora_dropout=0.05,
|
| 105 |
+
r=128,
|
| 106 |
+
target_modules=None,
|
| 107 |
+
task_type='CAUSAL_LM',
|
| 108 |
+
type='peft.LoraConfig'),
|
| 109 |
+
model_path='/root/models/InternVL2_2B',
|
| 110 |
+
quantization_llm=True,
|
| 111 |
+
quantization_vit=False,
|
| 112 |
+
type='xtuner.model.InternVL_V1_5')
|
| 113 |
+
optim_type = 'torch.optim.AdamW'
|
| 114 |
+
optim_wrapper = dict(
|
| 115 |
+
optimizer=dict(
|
| 116 |
+
betas=(
|
| 117 |
+
0.9,
|
| 118 |
+
0.999,
|
| 119 |
+
),
|
| 120 |
+
lr=2e-05,
|
| 121 |
+
type='torch.optim.AdamW',
|
| 122 |
+
weight_decay=0.05),
|
| 123 |
+
type='DeepSpeedOptimWrapper')
|
| 124 |
+
param_scheduler = [
|
| 125 |
+
dict(
|
| 126 |
+
begin=0,
|
| 127 |
+
by_epoch=True,
|
| 128 |
+
convert_to_iter_based=True,
|
| 129 |
+
end=0.12,
|
| 130 |
+
start_factor=1e-05,
|
| 131 |
+
type='mmengine.optim.LinearLR'),
|
| 132 |
+
dict(
|
| 133 |
+
begin=0.12,
|
| 134 |
+
by_epoch=True,
|
| 135 |
+
convert_to_iter_based=True,
|
| 136 |
+
end=4,
|
| 137 |
+
eta_min=0.0,
|
| 138 |
+
type='mmengine.optim.CosineAnnealingLR'),
|
| 139 |
+
]
|
| 140 |
+
path = '/root/models/InternVL2_2B'
|
| 141 |
+
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
|
| 142 |
+
randomness = dict(deterministic=False, seed=None)
|
| 143 |
+
resume = False
|
| 144 |
+
runner_type = 'FlexibleRunner'
|
| 145 |
+
save_steps = 1000
|
| 146 |
+
save_total_limit = -1
|
| 147 |
+
strategy = dict(
|
| 148 |
+
config=dict(
|
| 149 |
+
bf16=dict(enabled=True),
|
| 150 |
+
fp16=dict(enabled=False, initial_scale_power=16),
|
| 151 |
+
gradient_accumulation_steps='auto',
|
| 152 |
+
gradient_clipping='auto',
|
| 153 |
+
train_micro_batch_size_per_gpu='auto',
|
| 154 |
+
zero_allow_untested_optimizer=True,
|
| 155 |
+
zero_force_ds_cpu_optimizer=False,
|
| 156 |
+
zero_optimization=dict(overlap_comm=True, stage=2)),
|
| 157 |
+
exclude_frozen_parameters=True,
|
| 158 |
+
gradient_accumulation_steps=2,
|
| 159 |
+
gradient_clipping=1,
|
| 160 |
+
sequence_parallel_size=1,
|
| 161 |
+
train_micro_batch_size_per_gpu=1,
|
| 162 |
+
type='xtuner.engine.DeepSpeedStrategy')
|
| 163 |
+
tokenizer = dict(
|
| 164 |
+
pretrained_model_name_or_path='/root/models/InternVL2_2B',
|
| 165 |
+
trust_remote_code=True,
|
| 166 |
+
type='transformers.AutoTokenizer.from_pretrained')
|
| 167 |
+
train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
|
| 168 |
+
train_dataloader = dict(
|
| 169 |
+
batch_size=1,
|
| 170 |
+
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
|
| 171 |
+
dataset=dict(
|
| 172 |
+
data_paths=
|
| 173 |
+
'/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json',
|
| 174 |
+
image_folders='/root/data/tempData/screenshot_odimages',
|
| 175 |
+
max_length=8192,
|
| 176 |
+
model_path='/root/models/InternVL2_2B',
|
| 177 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 178 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset'),
|
| 179 |
+
num_workers=4,
|
| 180 |
+
sampler=dict(
|
| 181 |
+
length_property='modality_length',
|
| 182 |
+
per_device_batch_size=2,
|
| 183 |
+
type='xtuner.dataset.samplers.LengthGroupedSampler'))
|
| 184 |
+
visualizer = dict(
|
| 185 |
+
type='mmengine.visualization.Visualizer',
|
| 186 |
+
vis_backends=[
|
| 187 |
+
dict(type='mmengine.visualization.TensorboardVisBackend'),
|
| 188 |
+
])
|
| 189 |
+
warmup_ratio = 0.03
|
| 190 |
+
weight_decay = 0.05
|
| 191 |
+
work_dir = '/root/wangqun/work_dirs/internvl_ft_run_12_filter'
|
| 192 |
+
|
| 193 |
+
2025/03/04 10:44:04 - mmengine - DEBUG - An `TensorboardVisBackend` instance is built from registry, and its implementation can be found in mmengine.visualization.vis_backend
|
| 194 |
+
2025/03/04 10:44:04 - mmengine - DEBUG - An `Visualizer` instance is built from registry, and its implementation can be found in mmengine.visualization.visualizer
|
| 195 |
+
2025/03/04 10:44:04 - mmengine - DEBUG - Attribute `_env_initialized` is not defined in <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'> or `<class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized is False, `_init_env` will be called and <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized will be set to True
|
| 196 |
+
2025/03/04 10:44:05 - mmengine - DEBUG - Get class `RuntimeInfoHook` from "hook" registry in "mmengine"
|
| 197 |
+
2025/03/04 10:44:05 - mmengine - DEBUG - An `RuntimeInfoHook` instance is built from registry, and its implementation can be found in mmengine.hooks.runtime_info_hook
|
| 198 |
+
2025/03/04 10:44:05 - mmengine - DEBUG - An `IterTimerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.iter_timer_hook
|
| 199 |
+
2025/03/04 10:44:05 - mmengine - DEBUG - An `DistSamplerSeedHook` instance is built from registry, and its implementation can be found in mmengine.hooks.sampler_seed_hook
|
| 200 |
+
2025/03/04 10:44:05 - mmengine - DEBUG - An `LoggerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.logger_hook
|
| 201 |
+
2025/03/04 10:44:05 - mmengine - DEBUG - An `ParamSchedulerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.param_scheduler_hook
|
| 202 |
+
2025/03/04 10:44:05 - mmengine - DEBUG - An `CheckpointHook` instance is built from registry, and its implementation can be found in mmengine.hooks.checkpoint_hook
|
| 203 |
+
2025/03/04 10:44:05 - mmengine - WARNING - Failed to search registry with scope "mmengine" in the "builder" registry tree. As a workaround, the current "builder" registry in "xtuner" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmengine" is a correct scope, or whether the registry is initialized.
|
internvl_ft_run_12_filter/20250304_104403/vis_data/events.out.tfevents.1741056245.intern-studio-40019814.17053.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a1c288ad221462a4a8a981e1feef2141f61fb02c92b0d81c47078d4d277a3fa4
|
| 3 |
+
size 4845
|
internvl_ft_run_12_filter/20250304_111639/20250304_111639.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
internvl_ft_run_12_filter/20250304_111639/vis_data/events.out.tfevents.1741058201.intern-studio-40019814.23140.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6c197cbc5fe46cd6ee94a44546a7ff96eed17a9f96594b200c09a174483bdf28
|
| 3 |
+
size 4983
|
internvl_ft_run_12_filter/20250304_112305/20250304_112305.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
internvl_ft_run_12_filter/20250304_112305/vis_data/events.out.tfevents.1741058586.intern-studio-40019814.25156.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a3ecc6d8f1eb6882b13ebc2091216762d530789a91dd5d211545f065c08500c1
|
| 3 |
+
size 4983
|
internvl_ft_run_12_filter/20250304_112538/20250304_112538.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
internvl_ft_run_12_filter/20250304_112538/vis_data/events.out.tfevents.1741058739.intern-studio-40019814.26649.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be6291cbd77f2207ec598e9e75e13fab608b52277bea94cf9dda0e5d99ff87c1
|
| 3 |
+
size 4987
|
internvl_ft_run_12_filter/20250304_113017/20250304_113017.log
ADDED
|
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2025/03/04 11:30:18 - mmengine - DEBUG - An `DeepSpeedStrategy` instance is built from registry, and its implementation can be found in xtuner.engine._strategy.deepspeed
|
| 2 |
+
2025/03/04 11:30:18 - mmengine - INFO -
|
| 3 |
+
------------------------------------------------------------
|
| 4 |
+
System environment:
|
| 5 |
+
sys.platform: linux
|
| 6 |
+
Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
|
| 7 |
+
CUDA available: True
|
| 8 |
+
MUSA available: False
|
| 9 |
+
numpy_random_seed: 1251330375
|
| 10 |
+
GPU 0: NVIDIA A100-SXM4-80GB
|
| 11 |
+
CUDA_HOME: /usr/local/cuda
|
| 12 |
+
NVCC: Cuda compilation tools, release 12.2, V12.2.140
|
| 13 |
+
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
|
| 14 |
+
PyTorch: 2.4.1+cu121
|
| 15 |
+
PyTorch compiling details: PyTorch built with:
|
| 16 |
+
- GCC 9.3
|
| 17 |
+
- C++ Version: 201703
|
| 18 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
|
| 19 |
+
- Intel(R) MKL-DNN v3.4.2 (Git Hash 1137e04ec0b5251ca2b4400a4fd3c667ce843d67)
|
| 20 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 21 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 22 |
+
- NNPACK is enabled
|
| 23 |
+
- CPU capability usage: AVX512
|
| 24 |
+
- CUDA Runtime 12.1
|
| 25 |
+
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
|
| 26 |
+
- CuDNN 90.1 (built against CUDA 12.4)
|
| 27 |
+
- Magma 2.6.1
|
| 28 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.4.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
|
| 29 |
+
|
| 30 |
+
TorchVision: 0.19.1+cu121
|
| 31 |
+
OpenCV: 4.9.0
|
| 32 |
+
MMEngine: 0.10.6
|
| 33 |
+
|
| 34 |
+
Runtime environment:
|
| 35 |
+
launcher: none
|
| 36 |
+
randomness: {'seed': None, 'deterministic': False}
|
| 37 |
+
cudnn_benchmark: False
|
| 38 |
+
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
|
| 39 |
+
dist_cfg: {'backend': 'nccl'}
|
| 40 |
+
seed: None
|
| 41 |
+
deterministic: False
|
| 42 |
+
Distributed launcher: none
|
| 43 |
+
Distributed training: False
|
| 44 |
+
GPU number: 1
|
| 45 |
+
------------------------------------------------------------
|
| 46 |
+
|
| 47 |
+
2025/03/04 11:30:18 - mmengine - INFO - Config:
|
| 48 |
+
accumulative_counts = 2
|
| 49 |
+
batch_size = 1
|
| 50 |
+
betas = (
|
| 51 |
+
0.9,
|
| 52 |
+
0.999,
|
| 53 |
+
)
|
| 54 |
+
custom_hooks = [
|
| 55 |
+
dict(
|
| 56 |
+
tokenizer=dict(
|
| 57 |
+
pretrained_model_name_or_path=
|
| 58 |
+
'/root/share/new_models/OpenGVLab/InternVL2-2B',
|
| 59 |
+
trust_remote_code=True,
|
| 60 |
+
type='transformers.AutoTokenizer.from_pretrained'),
|
| 61 |
+
type='xtuner.engine.hooks.DatasetInfoHook'),
|
| 62 |
+
]
|
| 63 |
+
data_path = '/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json'
|
| 64 |
+
dataloader_num_workers = 4
|
| 65 |
+
default_hooks = dict(
|
| 66 |
+
checkpoint=dict(
|
| 67 |
+
by_epoch=False,
|
| 68 |
+
interval=1000,
|
| 69 |
+
max_keep_ckpts=-1,
|
| 70 |
+
save_optimizer=False,
|
| 71 |
+
type='mmengine.hooks.CheckpointHook'),
|
| 72 |
+
logger=dict(
|
| 73 |
+
interval=10,
|
| 74 |
+
log_metric_by_epoch=False,
|
| 75 |
+
type='mmengine.hooks.LoggerHook'),
|
| 76 |
+
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
|
| 77 |
+
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
|
| 78 |
+
timer=dict(type='mmengine.hooks.IterTimerHook'))
|
| 79 |
+
env_cfg = dict(
|
| 80 |
+
cudnn_benchmark=False,
|
| 81 |
+
dist_cfg=dict(backend='nccl'),
|
| 82 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 83 |
+
image_folder = '/'
|
| 84 |
+
launcher = 'none'
|
| 85 |
+
llava_dataset = dict(
|
| 86 |
+
data_paths='/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json',
|
| 87 |
+
image_folders='/',
|
| 88 |
+
max_length=8192,
|
| 89 |
+
model_path='/root/share/new_models/OpenGVLab/InternVL2-2B',
|
| 90 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 91 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset')
|
| 92 |
+
load_from = None
|
| 93 |
+
log_level = 'DEBUG'
|
| 94 |
+
log_processor = dict(by_epoch=False)
|
| 95 |
+
lr = 2e-05
|
| 96 |
+
max_epochs = 4
|
| 97 |
+
max_length = 8192
|
| 98 |
+
max_norm = 1
|
| 99 |
+
model = dict(
|
| 100 |
+
freeze_llm=True,
|
| 101 |
+
freeze_visual_encoder=True,
|
| 102 |
+
llm_lora=dict(
|
| 103 |
+
lora_alpha=256,
|
| 104 |
+
lora_dropout=0.05,
|
| 105 |
+
r=128,
|
| 106 |
+
target_modules=None,
|
| 107 |
+
task_type='CAUSAL_LM',
|
| 108 |
+
type='peft.LoraConfig'),
|
| 109 |
+
model_path='/root/share/new_models/OpenGVLab/InternVL2-2B',
|
| 110 |
+
quantization_llm=True,
|
| 111 |
+
quantization_vit=False,
|
| 112 |
+
type='xtuner.model.InternVL_V1_5')
|
| 113 |
+
optim_type = 'torch.optim.AdamW'
|
| 114 |
+
optim_wrapper = dict(
|
| 115 |
+
optimizer=dict(
|
| 116 |
+
betas=(
|
| 117 |
+
0.9,
|
| 118 |
+
0.999,
|
| 119 |
+
),
|
| 120 |
+
lr=2e-05,
|
| 121 |
+
type='torch.optim.AdamW',
|
| 122 |
+
weight_decay=0.05),
|
| 123 |
+
type='DeepSpeedOptimWrapper')
|
| 124 |
+
param_scheduler = [
|
| 125 |
+
dict(
|
| 126 |
+
begin=0,
|
| 127 |
+
by_epoch=True,
|
| 128 |
+
convert_to_iter_based=True,
|
| 129 |
+
end=0.12,
|
| 130 |
+
start_factor=1e-05,
|
| 131 |
+
type='mmengine.optim.LinearLR'),
|
| 132 |
+
dict(
|
| 133 |
+
begin=0.12,
|
| 134 |
+
by_epoch=True,
|
| 135 |
+
convert_to_iter_based=True,
|
| 136 |
+
end=4,
|
| 137 |
+
eta_min=0.0,
|
| 138 |
+
type='mmengine.optim.CosineAnnealingLR'),
|
| 139 |
+
]
|
| 140 |
+
path = '/root/share/new_models/OpenGVLab/InternVL2-2B'
|
| 141 |
+
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
|
| 142 |
+
randomness = dict(deterministic=False, seed=None)
|
| 143 |
+
resume = False
|
| 144 |
+
runner_type = 'FlexibleRunner'
|
| 145 |
+
save_steps = 1000
|
| 146 |
+
save_total_limit = -1
|
| 147 |
+
strategy = dict(
|
| 148 |
+
config=dict(
|
| 149 |
+
bf16=dict(enabled=True),
|
| 150 |
+
fp16=dict(enabled=False, initial_scale_power=16),
|
| 151 |
+
gradient_accumulation_steps='auto',
|
| 152 |
+
gradient_clipping='auto',
|
| 153 |
+
train_micro_batch_size_per_gpu='auto',
|
| 154 |
+
zero_allow_untested_optimizer=True,
|
| 155 |
+
zero_force_ds_cpu_optimizer=False,
|
| 156 |
+
zero_optimization=dict(overlap_comm=True, stage=2)),
|
| 157 |
+
exclude_frozen_parameters=True,
|
| 158 |
+
gradient_accumulation_steps=2,
|
| 159 |
+
gradient_clipping=1,
|
| 160 |
+
sequence_parallel_size=1,
|
| 161 |
+
train_micro_batch_size_per_gpu=1,
|
| 162 |
+
type='xtuner.engine.DeepSpeedStrategy')
|
| 163 |
+
tokenizer = dict(
|
| 164 |
+
pretrained_model_name_or_path=
|
| 165 |
+
'/root/share/new_models/OpenGVLab/InternVL2-2B',
|
| 166 |
+
trust_remote_code=True,
|
| 167 |
+
type='transformers.AutoTokenizer.from_pretrained')
|
| 168 |
+
train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
|
| 169 |
+
train_dataloader = dict(
|
| 170 |
+
batch_size=1,
|
| 171 |
+
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
|
| 172 |
+
dataset=dict(
|
| 173 |
+
data_paths=
|
| 174 |
+
'/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json',
|
| 175 |
+
image_folders='/',
|
| 176 |
+
max_length=8192,
|
| 177 |
+
model_path='/root/share/new_models/OpenGVLab/InternVL2-2B',
|
| 178 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 179 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset'),
|
| 180 |
+
num_workers=4,
|
| 181 |
+
sampler=dict(
|
| 182 |
+
length_property='modality_length',
|
| 183 |
+
per_device_batch_size=2,
|
| 184 |
+
type='xtuner.dataset.samplers.LengthGroupedSampler'))
|
| 185 |
+
visualizer = dict(
|
| 186 |
+
type='mmengine.visualization.Visualizer',
|
| 187 |
+
vis_backends=[
|
| 188 |
+
dict(type='mmengine.visualization.TensorboardVisBackend'),
|
| 189 |
+
])
|
| 190 |
+
warmup_ratio = 0.03
|
| 191 |
+
weight_decay = 0.05
|
| 192 |
+
work_dir = '/root/wangqun/work_dirs/internvl_ft_run_12_filter'
|
| 193 |
+
|
| 194 |
+
2025/03/04 11:30:18 - mmengine - DEBUG - An `TensorboardVisBackend` instance is built from registry, and its implementation can be found in mmengine.visualization.vis_backend
|
| 195 |
+
2025/03/04 11:30:18 - mmengine - DEBUG - An `Visualizer` instance is built from registry, and its implementation can be found in mmengine.visualization.visualizer
|
| 196 |
+
2025/03/04 11:30:18 - mmengine - DEBUG - Attribute `_env_initialized` is not defined in <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'> or `<class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized is False, `_init_env` will be called and <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized will be set to True
|
| 197 |
+
2025/03/04 11:30:19 - mmengine - DEBUG - Get class `RuntimeInfoHook` from "hook" registry in "mmengine"
|
| 198 |
+
2025/03/04 11:30:19 - mmengine - DEBUG - An `RuntimeInfoHook` instance is built from registry, and its implementation can be found in mmengine.hooks.runtime_info_hook
|
| 199 |
+
2025/03/04 11:30:19 - mmengine - DEBUG - An `IterTimerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.iter_timer_hook
|
| 200 |
+
2025/03/04 11:30:19 - mmengine - DEBUG - An `DistSamplerSeedHook` instance is built from registry, and its implementation can be found in mmengine.hooks.sampler_seed_hook
|
| 201 |
+
2025/03/04 11:30:19 - mmengine - DEBUG - An `LoggerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.logger_hook
|
| 202 |
+
2025/03/04 11:30:19 - mmengine - DEBUG - An `ParamSchedulerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.param_scheduler_hook
|
| 203 |
+
2025/03/04 11:30:19 - mmengine - DEBUG - An `CheckpointHook` instance is built from registry, and its implementation can be found in mmengine.hooks.checkpoint_hook
|
| 204 |
+
2025/03/04 11:30:19 - mmengine - WARNING - Failed to search registry with scope "mmengine" in the "builder" registry tree. As a workaround, the current "builder" registry in "xtuner" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmengine" is a correct scope, or whether the registry is initialized.
|
| 205 |
+
2025/03/04 11:30:19 - mmengine - DEBUG - An `from_pretrained` instance is built from registry, and its implementation can be found in transformers.models.auto.tokenization_auto
|
| 206 |
+
2025/03/04 11:30:19 - mmengine - DEBUG - An `DatasetInfoHook` instance is built from registry, and its implementation can be found in xtuner.engine.hooks.dataset_info_hook
|
| 207 |
+
2025/03/04 11:30:19 - mmengine - INFO - Hooks will be executed in the following order:
|
| 208 |
+
before_run:
|
| 209 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 210 |
+
(BELOW_NORMAL) LoggerHook
|
| 211 |
+
--------------------
|
| 212 |
+
before_train:
|
| 213 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 214 |
+
(NORMAL ) IterTimerHook
|
| 215 |
+
(NORMAL ) DatasetInfoHook
|
| 216 |
+
(VERY_LOW ) CheckpointHook
|
| 217 |
+
--------------------
|
| 218 |
+
before_train_epoch:
|
| 219 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 220 |
+
(NORMAL ) IterTimerHook
|
| 221 |
+
(NORMAL ) DistSamplerSeedHook
|
| 222 |
+
--------------------
|
| 223 |
+
before_train_iter:
|
| 224 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 225 |
+
(NORMAL ) IterTimerHook
|
| 226 |
+
--------------------
|
| 227 |
+
after_train_iter:
|
| 228 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 229 |
+
(NORMAL ) IterTimerHook
|
| 230 |
+
(BELOW_NORMAL) LoggerHook
|
| 231 |
+
(LOW ) ParamSchedulerHook
|
| 232 |
+
(VERY_LOW ) CheckpointHook
|
| 233 |
+
--------------------
|
| 234 |
+
after_train_epoch:
|
| 235 |
+
(NORMAL ) IterTimerHook
|
| 236 |
+
(LOW ) ParamSchedulerHook
|
| 237 |
+
(VERY_LOW ) CheckpointHook
|
| 238 |
+
--------------------
|
| 239 |
+
before_val:
|
| 240 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 241 |
+
(NORMAL ) DatasetInfoHook
|
| 242 |
+
--------------------
|
| 243 |
+
before_val_epoch:
|
| 244 |
+
(NORMAL ) IterTimerHook
|
| 245 |
+
--------------------
|
| 246 |
+
before_val_iter:
|
| 247 |
+
(NORMAL ) IterTimerHook
|
| 248 |
+
--------------------
|
| 249 |
+
after_val_iter:
|
| 250 |
+
(NORMAL ) IterTimerHook
|
| 251 |
+
(BELOW_NORMAL) LoggerHook
|
| 252 |
+
--------------------
|
| 253 |
+
after_val_epoch:
|
| 254 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 255 |
+
(NORMAL ) IterTimerHook
|
| 256 |
+
(BELOW_NORMAL) LoggerHook
|
| 257 |
+
(LOW ) ParamSchedulerHook
|
| 258 |
+
(VERY_LOW ) CheckpointHook
|
| 259 |
+
--------------------
|
| 260 |
+
after_val:
|
| 261 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 262 |
+
--------------------
|
| 263 |
+
after_train:
|
| 264 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 265 |
+
(VERY_LOW ) CheckpointHook
|
| 266 |
+
--------------------
|
| 267 |
+
before_test:
|
| 268 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 269 |
+
(NORMAL ) DatasetInfoHook
|
| 270 |
+
--------------------
|
| 271 |
+
before_test_epoch:
|
| 272 |
+
(NORMAL ) IterTimerHook
|
| 273 |
+
--------------------
|
| 274 |
+
before_test_iter:
|
| 275 |
+
(NORMAL ) IterTimerHook
|
| 276 |
+
--------------------
|
| 277 |
+
after_test_iter:
|
| 278 |
+
(NORMAL ) IterTimerHook
|
| 279 |
+
(BELOW_NORMAL) LoggerHook
|
| 280 |
+
--------------------
|
| 281 |
+
after_test_epoch:
|
| 282 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 283 |
+
(NORMAL ) IterTimerHook
|
| 284 |
+
(BELOW_NORMAL) LoggerHook
|
| 285 |
+
--------------------
|
| 286 |
+
after_test:
|
| 287 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 288 |
+
--------------------
|
| 289 |
+
after_run:
|
| 290 |
+
(BELOW_NORMAL) LoggerHook
|
| 291 |
+
--------------------
|
| 292 |
+
2025/03/04 11:30:19 - mmengine - DEBUG - An `FlexibleRunner` instance is built from registry, its implementation can be found inmmengine.runner._flexible_runner
|
| 293 |
+
2025/03/04 11:30:19 - mmengine - INFO - Starting to loading data and calc length
|
| 294 |
+
2025/03/04 11:30:19 - mmengine - INFO - =======Starting to process /root/data/tempData/screenshot_od/layout_ocr_multi_scale.json =======
|
| 295 |
+
2025/03/04 11:30:26 - mmengine - INFO - =======total 4806 samples of /root/data/tempData/screenshot_od/layout_ocr_multi_scale.json=======
|
| 296 |
+
2025/03/04 11:30:26 - mmengine - INFO - end loading data and calc length
|
| 297 |
+
2025/03/04 11:30:26 - mmengine - INFO - =======total 4806 samples=======
|
| 298 |
+
2025/03/04 11:30:26 - mmengine - DEBUG - An `InternVL_V1_5_Dataset` instance is built from registry, and its implementation can be found in xtuner.dataset.internvl_dataset
|
| 299 |
+
2025/03/04 11:30:26 - mmengine - INFO - LengthGroupedSampler is used.
|
| 300 |
+
2025/03/04 11:30:26 - mmengine - INFO - LengthGroupedSampler construction is complete, and the selected attribute is modality_length
|
| 301 |
+
2025/03/04 11:30:26 - mmengine - DEBUG - An `LengthGroupedSampler` instance is built from registry, and its implementation can be found in xtuner.dataset.samplers.length_grouped
|
| 302 |
+
2025/03/04 11:30:26 - mmengine - WARNING - Dataset InternVL_V1_5_Dataset has no metainfo. ``dataset_meta`` in visualizer will be None.
|
| 303 |
+
2025/03/04 11:30:26 - mmengine - DEBUG - An `TrainLoop` instance is built from registry, and its implementation can be found in xtuner.engine.runner.loops
|
| 304 |
+
2025/03/04 11:30:26 - mmengine - INFO - Start to load InternVL_V1_5 model.
|
| 305 |
+
2025/03/04 11:30:26 - mmengine - DEBUG - Get class `BaseDataPreprocessor` from "model" registry in "mmengine"
|
| 306 |
+
2025/03/04 11:30:26 - mmengine - DEBUG - An `BaseDataPreprocessor` instance is built from registry, and its implementation can be found in mmengine.model.base_model.data_preprocessor
|
| 307 |
+
2025/03/04 11:30:32 - mmengine - DEBUG - An `LoraConfig` instance is built from registry, and its implementation can be found in peft.tuners.lora.config
|
| 308 |
+
2025/03/04 11:30:34 - mmengine - INFO - InternVL_V1_5(
|
| 309 |
+
(data_preprocessor): BaseDataPreprocessor()
|
| 310 |
+
(model): InternVLChatModel(
|
| 311 |
+
(vision_model): InternVisionModel(
|
| 312 |
+
(embeddings): InternVisionEmbeddings(
|
| 313 |
+
(patch_embedding): Conv2d(3, 1024, kernel_size=(14, 14), stride=(14, 14))
|
| 314 |
+
)
|
| 315 |
+
(encoder): InternVisionEncoder(
|
| 316 |
+
(layers): ModuleList(
|
| 317 |
+
(0-23): 24 x InternVisionEncoderLayer(
|
| 318 |
+
(attn): InternAttention(
|
| 319 |
+
(qkv): Linear(in_features=1024, out_features=3072, bias=True)
|
| 320 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
| 321 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
| 322 |
+
(proj): Linear(in_features=1024, out_features=1024, bias=True)
|
| 323 |
+
)
|
| 324 |
+
(mlp): InternMLP(
|
| 325 |
+
(act): GELUActivation()
|
| 326 |
+
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
|
| 327 |
+
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
|
| 328 |
+
)
|
| 329 |
+
(norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
|
| 330 |
+
(norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
|
| 331 |
+
(drop_path1): Identity()
|
| 332 |
+
(drop_path2): Identity()
|
| 333 |
+
)
|
| 334 |
+
)
|
| 335 |
+
)
|
| 336 |
+
)
|
| 337 |
+
(language_model): PeftModelForCausalLM(
|
| 338 |
+
(base_model): LoraModel(
|
| 339 |
+
(model): InternLM2ForCausalLM(
|
| 340 |
+
(model): InternLM2Model(
|
| 341 |
+
(tok_embeddings): Embedding(92553, 2048, padding_idx=2)
|
| 342 |
+
(layers): ModuleList(
|
| 343 |
+
(0-23): 24 x InternLM2DecoderLayer(
|
| 344 |
+
(attention): InternLM2Attention(
|
| 345 |
+
(wqkv): lora.Linear(
|
| 346 |
+
(base_layer): Linear4bit(in_features=2048, out_features=4096, bias=False)
|
| 347 |
+
(lora_dropout): ModuleDict(
|
| 348 |
+
(default): Dropout(p=0.05, inplace=False)
|
| 349 |
+
)
|
| 350 |
+
(lora_A): ModuleDict(
|
| 351 |
+
(default): Linear(in_features=2048, out_features=128, bias=False)
|
| 352 |
+
)
|
| 353 |
+
(lora_B): ModuleDict(
|
| 354 |
+
(default): Linear(in_features=128, out_features=4096, bias=False)
|
| 355 |
+
)
|
| 356 |
+
(lora_embedding_A): ParameterDict()
|
| 357 |
+
(lora_embedding_B): ParameterDict()
|
| 358 |
+
(lora_magnitude_vector): ModuleDict()
|
| 359 |
+
)
|
| 360 |
+
(wo): lora.Linear(
|
| 361 |
+
(base_layer): Linear4bit(in_features=2048, out_features=2048, bias=False)
|
| 362 |
+
(lora_dropout): ModuleDict(
|
| 363 |
+
(default): Dropout(p=0.05, inplace=False)
|
| 364 |
+
)
|
| 365 |
+
(lora_A): ModuleDict(
|
| 366 |
+
(default): Linear(in_features=2048, out_features=128, bias=False)
|
| 367 |
+
)
|
| 368 |
+
(lora_B): ModuleDict(
|
| 369 |
+
(default): Linear(in_features=128, out_features=2048, bias=False)
|
| 370 |
+
)
|
| 371 |
+
(lora_embedding_A): ParameterDict()
|
| 372 |
+
(lora_embedding_B): ParameterDict()
|
| 373 |
+
(lora_magnitude_vector): ModuleDict()
|
| 374 |
+
)
|
| 375 |
+
(rotary_emb): InternLM2DynamicNTKScalingRotaryEmbedding()
|
| 376 |
+
)
|
| 377 |
+
(feed_forward): InternLM2MLP(
|
| 378 |
+
(w1): lora.Linear(
|
| 379 |
+
(base_layer): Linear4bit(in_features=2048, out_features=8192, bias=False)
|
| 380 |
+
(lora_dropout): ModuleDict(
|
| 381 |
+
(default): Dropout(p=0.05, inplace=False)
|
| 382 |
+
)
|
| 383 |
+
(lora_A): ModuleDict(
|
| 384 |
+
(default): Linear(in_features=2048, out_features=128, bias=False)
|
| 385 |
+
)
|
| 386 |
+
(lora_B): ModuleDict(
|
| 387 |
+
(default): Linear(in_features=128, out_features=8192, bias=False)
|
| 388 |
+
)
|
| 389 |
+
(lora_embedding_A): ParameterDict()
|
| 390 |
+
(lora_embedding_B): ParameterDict()
|
| 391 |
+
(lora_magnitude_vector): ModuleDict()
|
| 392 |
+
)
|
| 393 |
+
(w3): lora.Linear(
|
| 394 |
+
(base_layer): Linear4bit(in_features=2048, out_features=8192, bias=False)
|
| 395 |
+
(lora_dropout): ModuleDict(
|
| 396 |
+
(default): Dropout(p=0.05, inplace=False)
|
| 397 |
+
)
|
| 398 |
+
(lora_A): ModuleDict(
|
| 399 |
+
(default): Linear(in_features=2048, out_features=128, bias=False)
|
| 400 |
+
)
|
| 401 |
+
(lora_B): ModuleDict(
|
| 402 |
+
(default): Linear(in_features=128, out_features=8192, bias=False)
|
| 403 |
+
)
|
| 404 |
+
(lora_embedding_A): ParameterDict()
|
| 405 |
+
(lora_embedding_B): ParameterDict()
|
| 406 |
+
(lora_magnitude_vector): ModuleDict()
|
| 407 |
+
)
|
| 408 |
+
(w2): lora.Linear(
|
| 409 |
+
(base_layer): Linear4bit(in_features=8192, out_features=2048, bias=False)
|
| 410 |
+
(lora_dropout): ModuleDict(
|
| 411 |
+
(default): Dropout(p=0.05, inplace=False)
|
| 412 |
+
)
|
| 413 |
+
(lora_A): ModuleDict(
|
| 414 |
+
(default): Linear(in_features=8192, out_features=128, bias=False)
|
| 415 |
+
)
|
| 416 |
+
(lora_B): ModuleDict(
|
| 417 |
+
(default): Linear(in_features=128, out_features=2048, bias=False)
|
| 418 |
+
)
|
| 419 |
+
(lora_embedding_A): ParameterDict()
|
| 420 |
+
(lora_embedding_B): ParameterDict()
|
| 421 |
+
(lora_magnitude_vector): ModuleDict()
|
| 422 |
+
)
|
| 423 |
+
(act_fn): SiLU()
|
| 424 |
+
)
|
| 425 |
+
(attention_norm): InternLM2RMSNorm()
|
| 426 |
+
(ffn_norm): InternLM2RMSNorm()
|
| 427 |
+
)
|
| 428 |
+
)
|
| 429 |
+
(norm): InternLM2RMSNorm()
|
| 430 |
+
)
|
| 431 |
+
(output): lora.Linear(
|
| 432 |
+
(base_layer): Linear4bit(in_features=2048, out_features=92553, bias=False)
|
| 433 |
+
(lora_dropout): ModuleDict(
|
| 434 |
+
(default): Dropout(p=0.05, inplace=False)
|
| 435 |
+
)
|
| 436 |
+
(lora_A): ModuleDict(
|
| 437 |
+
(default): Linear(in_features=2048, out_features=128, bias=False)
|
| 438 |
+
)
|
| 439 |
+
(lora_B): ModuleDict(
|
| 440 |
+
(default): Linear(in_features=128, out_features=92553, bias=False)
|
| 441 |
+
)
|
| 442 |
+
(lora_embedding_A): ParameterDict()
|
| 443 |
+
(lora_embedding_B): ParameterDict()
|
| 444 |
+
(lora_magnitude_vector): ModuleDict()
|
| 445 |
+
)
|
| 446 |
+
)
|
| 447 |
+
)
|
| 448 |
+
)
|
| 449 |
+
(mlp1): Sequential(
|
| 450 |
+
(0): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
|
| 451 |
+
(1): Linear(in_features=4096, out_features=2048, bias=True)
|
| 452 |
+
(2): GELU(approximate='none')
|
| 453 |
+
(3): Linear(in_features=2048, out_features=2048, bias=True)
|
| 454 |
+
)
|
| 455 |
+
)
|
| 456 |
+
)
|
| 457 |
+
2025/03/04 11:30:34 - mmengine - INFO - InternVL_V1_5 construction is complete
|
| 458 |
+
2025/03/04 11:30:34 - mmengine - DEBUG - An `InternVL_V1_5` instance is built from registry, and its implementation can be found in xtuner.model.internvl
|
| 459 |
+
2025/03/04 11:30:34 - mmengine - DEBUG - Get class `DefaultOptimWrapperConstructor` from "optimizer wrapper constructor" registry in "mmengine"
|
| 460 |
+
2025/03/04 11:30:34 - mmengine - DEBUG - An `DefaultOptimWrapperConstructor` instance is built from registry, and its implementation can be found in mmengine.optim.optimizer.default_constructor
|
| 461 |
+
2025/03/04 11:30:34 - mmengine - DEBUG - An `AdamW` instance is built from registry, and its implementation can be found in torch.optim.adamw
|
| 462 |
+
2025/03/04 11:30:34 - mmengine - DEBUG - Get class `DeepSpeedOptimWrapper` from "optim_wrapper" registry in "mmengine"
|
| 463 |
+
2025/03/04 11:30:34 - mmengine - DEBUG - An `DeepSpeedOptimWrapper` instance is built from registry, and its implementation can be found in mmengine._strategy.deepspeed
|
| 464 |
+
2025/03/04 11:30:36 - mmengine - DEBUG - The `end` of <class 'mmengine.optim.scheduler.lr_scheduler.LinearLR'> is not set. Use the max epochs/iters of train loop as default.
|
| 465 |
+
2025/03/04 11:30:36 - mmengine - DEBUG - The `end` of <class 'mmengine.optim.scheduler.lr_scheduler.CosineAnnealingLR'> is not set. Use the max epochs/iters of train loop as default.
|
| 466 |
+
2025/03/04 11:30:36 - mmengine - INFO - Num train samples 4806
|
| 467 |
+
2025/03/04 11:30:36 - mmengine - INFO - train example:
|
| 468 |
+
2025/03/04 11:30:36 - mmengine - INFO - <s><|im_start|> system
|
| 469 |
+
You are an AI assistant whose name is InternLM (书生·浦语).<|im_end|><|im_start|>user
|
| 470 |
+
<img> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> <IMG_CONTEXT> </img>
|
| 471 |
+
请从这张聊天截图中提取结构化信息<|im_end|><|im_start|> assistant
|
| 472 |
+
{
|
| 473 |
+
"dialog_name": "<对方正在输入...",
|
| 474 |
+
"conversation": [
|
| 475 |
+
{
|
| 476 |
+
"timestamp": "",
|
| 477 |
+
"speaker": "<对方正在输入...",
|
| 478 |
+
"content": "不是",
|
| 479 |
+
"message_bbox": {
|
| 480 |
+
"min_x": 855,
|
| 481 |
+
"max_x": 923,
|
| 482 |
+
"min_y": 236,
|
| 483 |
+
"max_y": 269
|
| 484 |
+
},
|
| 485 |
+
"image": "",
|
| 486 |
+
"transfer": [],
|
| 487 |
+
"file": []
|
| 488 |
+
},
|
| 489 |
+
{
|
| 490 |
+
"timestamp": "",
|
| 491 |
+
"speaker": "<对方正在输入...",
|
| 492 |
+
"content": "在淘宝里",
|
| 493 |
+
"message_bbox": {
|
| 494 |
+
"min_x": 783,
|
| 495 |
+
"max_x": 921,
|
| 496 |
+
"min_y": 345,
|
| 497 |
+
"max_y": 377
|
| 498 |
+
},
|
| 499 |
+
"image": "",
|
| 500 |
+
"transfer": [],
|
| 501 |
+
"file": []
|
| 502 |
+
},
|
| 503 |
+
{
|
| 504 |
+
"timestamp": "",
|
| 505 |
+
"speaker": "<对方正在输入...",
|
| 506 |
+
"content": "不能发微信",
|
| 507 |
+
"message_bbox": {
|
| 508 |
+
"min_x": 747,
|
| 509 |
+
"max_x": 923,
|
| 510 |
+
"min_y": 452,
|
| 511 |
+
"max_y": 486
|
| 512 |
+
},
|
| 513 |
+
"image": "",
|
| 514 |
+
"transfer": [],
|
| 515 |
+
"file": []
|
| 516 |
+
},
|
| 517 |
+
{
|
| 518 |
+
"timestamp": "",
|
| 519 |
+
"speaker": "<对方正在输入...",
|
| 520 |
+
"content": "两字",
|
| 521 |
+
"message_bbox": {
|
| 522 |
+
"min_x": 854,
|
| 523 |
+
"max_x": 922,
|
| 524 |
+
"min_y": 560,
|
| 525 |
+
"max_y": 594
|
| 526 |
+
},
|
| 527 |
+
"image": "",
|
| 528 |
+
"transfer": [],
|
| 529 |
+
"file": []
|
| 530 |
+
},
|
| 531 |
+
{
|
| 532 |
+
"timestamp": "",
|
| 533 |
+
"speaker": "<对方正在输入...",
|
| 534 |
+
"content": "微信",
|
| 535 |
+
"message_bbox": {
|
| 536 |
+
"min_x": 854,
|
| 537 |
+
"max_x": 924,
|
| 538 |
+
"min_y": 670,
|
| 539 |
+
"max_y": 702
|
| 540 |
+
},
|
| 541 |
+
"image": "",
|
| 542 |
+
"transfer": [],
|
| 543 |
+
"file": []
|
| 544 |
+
},
|
| 545 |
+
{
|
| 546 |
+
"timestamp": "",
|
| 547 |
+
"speaker": "<对方正在输入...",
|
| 548 |
+
"content": "①微信",
|
| 549 |
+
"message_bbox": {
|
| 550 |
+
"min_x": 788,
|
| 551 |
+
"max_x": 922,
|
| 552 |
+
"min_y": 777,
|
| 553 |
+
"max_y": 811
|
| 554 |
+
},
|
| 555 |
+
"image": "",
|
| 556 |
+
"transfer": [],
|
| 557 |
+
"file": []
|
| 558 |
+
}
|
| 559 |
+
]
|
| 560 |
+
}<|im_end|>
|
| 561 |
+
2025/03/04 11:30:36 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
|
| 562 |
+
2025/03/04 11:30:36 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
|
| 563 |
+
2025/03/04 11:30:36 - mmengine - INFO - Checkpoints will be saved to /root/wangqun/work_dirs/internvl_ft_run_12_filter.
|
| 564 |
+
2025/03/04 11:31:22 - mmengine - INFO - Iter(train) [ 10/19224] lr: 3.1324e-07 eta: 1 day, 0:14:22 time: 4.5416 data_time: 0.0107 memory: 17874 loss: 0.4848
|
| 565 |
+
2025/03/04 11:31:37 - mmengine - INFO - Iter(train) [ 20/19224] lr: 6.6106e-07 eta: 16:10:09 time: 1.5206 data_time: 0.0143 memory: 11809 loss: 0.5176
|
| 566 |
+
2025/03/04 11:31:52 - mmengine - INFO - Iter(train) [ 30/19224] lr: 1.0089e-06 eta: 13:23:24 time: 1.4721 data_time: 0.0109 memory: 11450 loss: 0.5703
|
| 567 |
+
2025/03/04 11:32:06 - mmengine - INFO - Iter(train) [ 40/19224] lr: 1.3567e-06 eta: 11:59:30 time: 1.4671 data_time: 0.0111 memory: 11364 loss: 0.4955
|
| 568 |
+
2025/03/04 11:32:20 - mmengine - INFO - Iter(train) [ 50/19224] lr: 1.7045e-06 eta: 11:03:04 time: 1.3731 data_time: 0.0113 memory: 11364 loss: 0.6113
|
| 569 |
+
2025/03/04 11:32:34 - mmengine - INFO - Iter(train) [ 60/19224] lr: 2.0524e-06 eta: 10:26:18 time: 1.3907 data_time: 0.0112 memory: 11117 loss: 0.6183
|
| 570 |
+
2025/03/04 11:32:47 - mmengine - INFO - Iter(train) [ 70/19224] lr: 2.4002e-06 eta: 9:57:44 time: 1.3416 data_time: 0.0109 memory: 11027 loss: 0.6026
|
| 571 |
+
2025/03/04 11:33:00 - mmengine - INFO - Iter(train) [ 80/19224] lr: 2.7480e-06 eta: 9:33:38 time: 1.2760 data_time: 0.0107 memory: 11055 loss: 0.6811
|
| 572 |
+
2025/03/04 11:33:10 - mmengine - INFO - Iter(train) [ 90/19224] lr: 3.0958e-06 eta: 9:05:42 time: 1.0182 data_time: 0.0101 memory: 10558 loss: 0.5202
|
| 573 |
+
2025/03/04 11:33:18 - mmengine - INFO - Iter(train) [ 100/19224] lr: 3.4436e-06 eta: 8:34:44 time: 0.7483 data_time: 0.0091 memory: 9661 loss: 0.5684
|
| 574 |
+
2025/03/04 11:33:36 - mmengine - INFO - Iter(train) [ 110/19224] lr: 3.7915e-06 eta: 8:39:45 time: 1.7979 data_time: 0.0105 memory: 15104 loss: 0.3638
|
| 575 |
+
2025/03/04 11:33:52 - mmengine - INFO - Iter(train) [ 120/19224] lr: 4.1393e-06 eta: 8:39:11 time: 1.6204 data_time: 0.0104 memory: 12016 loss: 0.3501
|
| 576 |
+
2025/03/04 11:34:07 - mmengine - INFO - Iter(train) [ 130/19224] lr: 4.4871e-06 eta: 8:36:04 time: 1.5144 data_time: 0.0105 memory: 11578 loss: 0.3903
|
| 577 |
+
2025/03/04 11:34:22 - mmengine - INFO - Iter(train) [ 140/19224] lr: 4.8349e-06 eta: 8:32:49 time: 1.4901 data_time: 0.0109 memory: 11441 loss: 0.3476
|
| 578 |
+
2025/03/04 11:34:36 - mmengine - INFO - Iter(train) [ 150/19224] lr: 5.1828e-06 eta: 8:29:01 time: 1.4462 data_time: 0.0114 memory: 11303 loss: 0.3756
|
| 579 |
+
2025/03/04 11:34:50 - mmengine - INFO - Iter(train) [ 160/19224] lr: 5.5306e-06 eta: 8:23:51 time: 1.3546 data_time: 0.0105 memory: 11123 loss: 0.3872
|
| 580 |
+
2025/03/04 11:35:02 - mmengine - INFO - Iter(train) [ 170/19224] lr: 5.8784e-06 eta: 8:17:20 time: 1.2510 data_time: 0.0105 memory: 10922 loss: 0.3984
|
| 581 |
+
2025/03/04 11:35:14 - mmengine - INFO - Iter(train) [ 180/19224] lr: 6.2262e-06 eta: 8:09:41 time: 1.1468 data_time: 0.0114 memory: 10672 loss: 0.4183
|
| 582 |
+
2025/03/04 11:35:24 - mmengine - INFO - Iter(train) [ 190/19224] lr: 6.5740e-06 eta: 8:00:03 time: 0.9815 data_time: 0.0096 memory: 10248 loss: 0.3544
|
| 583 |
+
2025/03/04 11:35:31 - mmengine - INFO - Iter(train) [ 200/19224] lr: 6.9219e-06 eta: 7:46:45 time: 0.6902 data_time: 0.0091 memory: 9804 loss: 0.3184
|
| 584 |
+
2025/03/04 11:35:51 - mmengine - INFO - Iter(train) [ 210/19224] lr: 7.2697e-06 eta: 7:55:34 time: 2.0721 data_time: 0.0104 memory: 17788 loss: 0.2691
|
| 585 |
+
2025/03/04 11:36:07 - mmengine - INFO - Iter(train) [ 220/19224] lr: 7.6175e-06 eta: 7:56:38 time: 1.5929 data_time: 0.0118 memory: 11865 loss: 0.3032
|
| 586 |
+
2025/03/04 11:36:22 - mmengine - INFO - Iter(train) [ 230/19224] lr: 7.9653e-06 eta: 7:56:16 time: 1.4955 data_time: 0.0109 memory: 11605 loss: 0.3026
|
| 587 |
+
2025/03/04 11:36:37 - mmengine - INFO - Iter(train) [ 240/19224] lr: 8.3132e-06 eta: 7:55:03 time: 1.4318 data_time: 0.0110 memory: 11348 loss: 0.2916
|
| 588 |
+
2025/03/04 11:36:51 - mmengine - INFO - Iter(train) [ 250/19224] lr: 8.6610e-06 eta: 7:53:24 time: 1.3910 data_time: 0.0106 memory: 11212 loss: 0.3301
|
| 589 |
+
2025/03/04 11:37:04 - mmengine - INFO - Iter(train) [ 260/19224] lr: 9.0088e-06 eta: 7:51:32 time: 1.3642 data_time: 0.0106 memory: 11092 loss: 0.3150
|
| 590 |
+
2025/03/04 11:37:16 - mmengine - INFO - Iter(train) [ 270/19224] lr: 9.3566e-06 eta: 7:47:31 time: 1.1699 data_time: 0.0109 memory: 10895 loss: 0.4017
|
| 591 |
+
2025/03/04 11:37:26 - mmengine - INFO - Iter(train) [ 280/19224] lr: 9.7045e-06 eta: 7:41:37 time: 0.9782 data_time: 0.0094 memory: 10390 loss: 0.2858
|
| 592 |
+
2025/03/04 11:37:34 - mmengine - INFO - Iter(train) [ 290/19224] lr: 1.0052e-05 eta: 7:35:05 time: 0.8845 data_time: 0.0096 memory: 9940 loss: 0.3397
|
| 593 |
+
2025/03/04 11:37:41 - mmengine - INFO - Iter(train) [ 300/19224] lr: 1.0400e-05 eta: 7:26:50 time: 0.6804 data_time: 0.0089 memory: 9679 loss: 0.3477
|
| 594 |
+
2025/03/04 11:37:58 - mmengine - INFO - Iter(train) [ 310/19224] lr: 1.0748e-05 eta: 7:29:22 time: 1.6891 data_time: 0.0105 memory: 13096 loss: 0.2749
|
| 595 |
+
2025/03/04 11:38:14 - mmengine - INFO - Iter(train) [ 320/19224] lr: 1.1096e-05 eta: 7:30:40 time: 1.5811 data_time: 0.0108 memory: 11972 loss: 0.2802
|
| 596 |
+
2025/03/04 11:38:29 - mmengine - INFO - Iter(train) [ 330/19224] lr: 1.1444e-05 eta: 7:31:27 time: 1.5370 data_time: 0.0105 memory: 11557 loss: 0.2905
|
| 597 |
+
2025/03/04 11:38:44 - mmengine - INFO - Iter(train) [ 340/19224] lr: 1.1791e-05 eta: 7:31:20 time: 1.4478 data_time: 0.0110 memory: 11408 loss: 0.2810
|
| 598 |
+
2025/03/04 11:38:58 - mmengine - INFO - Iter(train) [ 350/19224] lr: 1.2139e-05 eta: 7:30:44 time: 1.3936 data_time: 0.0107 memory: 11262 loss: 0.3028
|
| 599 |
+
2025/03/04 11:39:11 - mmengine - INFO - Iter(train) [ 360/19224] lr: 1.2487e-05 eta: 7:29:38 time: 1.3336 data_time: 0.0114 memory: 11153 loss: 0.2933
|
| 600 |
+
2025/03/04 11:39:24 - mmengine - INFO - Iter(train) [ 370/19224] lr: 1.2835e-05 eta: 7:28:05 time: 1.2765 data_time: 0.0108 memory: 11027 loss: 0.3327
|
| 601 |
+
2025/03/04 11:39:35 - mmengine - INFO - Iter(train) [ 380/19224] lr: 1.3183e-05 eta: 7:25:06 time: 1.0944 data_time: 0.0100 memory: 10580 loss: 0.3867
|
| 602 |
+
2025/03/04 11:39:45 - mmengine - INFO - Iter(train) [ 390/19224] lr: 1.3530e-05 eta: 7:21:20 time: 0.9780 data_time: 0.0097 memory: 10354 loss: 0.3154
|
| 603 |
+
2025/03/04 11:39:52 - mmengine - INFO - Iter(train) [ 400/19224] lr: 1.3878e-05 eta: 7:16:13 time: 0.7822 data_time: 0.0089 memory: 9683 loss: 0.3445
|
| 604 |
+
2025/03/04 11:40:09 - mmengine - INFO - Iter(train) [ 410/19224] lr: 1.4226e-05 eta: 7:17:55 time: 1.6434 data_time: 0.0107 memory: 12505 loss: 0.2493
|
| 605 |
+
2025/03/04 11:40:25 - mmengine - INFO - Iter(train) [ 420/19224] lr: 1.4574e-05 eta: 7:19:01 time: 1.5764 data_time: 0.0106 memory: 11912 loss: 0.2502
|
| 606 |
+
2025/03/04 11:40:40 - mmengine - INFO - Iter(train) [ 430/19224] lr: 1.4922e-05 eta: 7:19:47 time: 1.5375 data_time: 0.0108 memory: 11529 loss: 0.2680
|
| 607 |
+
2025/03/04 11:40:54 - mmengine - INFO - Iter(train) [ 440/19224] lr: 1.5270e-05 eta: 7:19:43 time: 1.4275 data_time: 0.0106 memory: 11389 loss: 0.2787
|
| 608 |
+
2025/03/04 11:41:08 - mmengine - INFO - Iter(train) [ 450/19224] lr: 1.5617e-05 eta: 7:19:33 time: 1.4134 data_time: 0.0110 memory: 11266 loss: 0.3042
|
| 609 |
+
2025/03/04 11:41:21 - mmengine - INFO - Iter(train) [ 460/19224] lr: 1.5965e-05 eta: 7:18:12 time: 1.2417 data_time: 0.0103 memory: 11039 loss: 0.3354
|
| 610 |
+
2025/03/04 11:41:34 - mmengine - INFO - Iter(train) [ 470/19224] lr: 1.6313e-05 eta: 7:17:27 time: 1.3231 data_time: 0.0105 memory: 10907 loss: 0.3018
|
| 611 |
+
2025/03/04 11:41:46 - mmengine - INFO - Iter(train) [ 480/19224] lr: 1.6661e-05 eta: 7:15:48 time: 1.1828 data_time: 0.0098 memory: 10818 loss: 0.3590
|
| 612 |
+
2025/03/04 11:41:56 - mmengine - INFO - Iter(train) [ 490/19224] lr: 1.7009e-05 eta: 7:13:20 time: 1.0446 data_time: 0.0096 memory: 10395 loss: 0.3291
|
| 613 |
+
2025/03/04 11:42:04 - mmengine - INFO - Iter(train) [ 500/19224] lr: 1.7357e-05 eta: 7:09:04 time: 0.7395 data_time: 0.0089 memory: 9992 loss: 0.2996
|
| 614 |
+
2025/03/04 11:42:21 - mmengine - INFO - Iter(train) [ 510/19224] lr: 1.7704e-05 eta: 7:11:10 time: 1.7567 data_time: 0.0102 memory: 14188 loss: 0.2741
|
| 615 |
+
2025/03/04 11:42:37 - mmengine - INFO - Iter(train) [ 520/19224] lr: 1.8052e-05 eta: 7:12:15 time: 1.6026 data_time: 0.0107 memory: 12266 loss: 0.2345
|
| 616 |
+
2025/03/04 11:42:52 - mmengine - INFO - Iter(train) [ 530/19224] lr: 1.8400e-05 eta: 7:12:25 time: 1.4521 data_time: 0.0105 memory: 11810 loss: 0.2394
|
| 617 |
+
2025/03/04 11:43:08 - mmengine - INFO - Iter(train) [ 540/19224] lr: 1.8748e-05 eta: 7:13:25 time: 1.6034 data_time: 0.0117 memory: 11765 loss: 0.2383
|
| 618 |
+
2025/03/04 11:43:22 - mmengine - INFO - Iter(train) [ 550/19224] lr: 1.9096e-05 eta: 7:13:17 time: 1.4077 data_time: 0.0110 memory: 11367 loss: 0.2818
|
| 619 |
+
2025/03/04 11:43:36 - mmengine - INFO - Iter(train) [ 560/19224] lr: 1.9443e-05 eta: 7:13:12 time: 1.4201 data_time: 0.0108 memory: 11259 loss: 0.2765
|
| 620 |
+
2025/03/04 11:43:50 - mmengine - INFO - Iter(train) [ 570/19224] lr: 1.9791e-05 eta: 7:12:48 time: 1.3616 data_time: 0.0130 memory: 11167 loss: 0.2869
|
| 621 |
+
2025/03/04 11:44:03 - mmengine - INFO - Iter(train) [ 580/19224] lr: 2.0000e-05 eta: 7:12:11 time: 1.3208 data_time: 0.0104 memory: 10925 loss: 0.3095
|
| 622 |
+
2025/03/04 11:44:14 - mmengine - INFO - Iter(train) [ 590/19224] lr: 2.0000e-05 eta: 7:10:19 time: 1.0787 data_time: 0.0098 memory: 10596 loss: 0.2788
|
| 623 |
+
2025/03/04 11:44:23 - mmengine - INFO - Iter(train) [ 600/19224] lr: 2.0000e-05 eta: 7:07:43 time: 0.9279 data_time: 0.0097 memory: 10005 loss: 0.2877
|
| 624 |
+
2025/03/04 11:44:41 - mmengine - INFO - Iter(train) [ 610/19224] lr: 2.0000e-05 eta: 7:09:22 time: 1.7489 data_time: 0.0104 memory: 13855 loss: 0.2535
|
| 625 |
+
2025/03/04 11:44:56 - mmengine - INFO - Iter(train) [ 620/19224] lr: 2.0000e-05 eta: 7:09:57 time: 1.5451 data_time: 0.0106 memory: 12281 loss: 0.2177
|
| 626 |
+
2025/03/04 11:45:11 - mmengine - INFO - Iter(train) [ 630/19224] lr: 2.0000e-05 eta: 7:10:25 time: 1.5314 data_time: 0.0107 memory: 11697 loss: 0.2348
|
| 627 |
+
2025/03/04 11:45:26 - mmengine - INFO - Iter(train) [ 640/19224] lr: 1.9999e-05 eta: 7:10:31 time: 1.4570 data_time: 0.0107 memory: 11459 loss: 0.2709
|
| 628 |
+
2025/03/04 11:45:40 - mmengine - INFO - Iter(train) [ 650/19224] lr: 1.9999e-05 eta: 7:10:22 time: 1.4061 data_time: 0.0109 memory: 11390 loss: 0.2576
|
| 629 |
+
2025/03/04 11:45:53 - mmengine - INFO - Iter(train) [ 660/19224] lr: 1.9999e-05 eta: 7:09:48 time: 1.3197 data_time: 0.0109 memory: 11218 loss: 0.3110
|
| 630 |
+
2025/03/04 11:46:06 - mmengine - INFO - Iter(train) [ 670/19224] lr: 1.9999e-05 eta: 7:09:04 time: 1.2780 data_time: 0.0106 memory: 10981 loss: 0.3224
|
| 631 |
+
2025/03/04 11:46:17 - mmengine - INFO - Iter(train) [ 680/19224] lr: 1.9998e-05 eta: 7:07:38 time: 1.1260 data_time: 0.0104 memory: 10725 loss: 0.3063
|
| 632 |
+
2025/03/04 11:46:27 - mmengine - INFO - Iter(train) [ 690/19224] lr: 1.9998e-05 eta: 7:05:30 time: 0.9567 data_time: 0.0097 memory: 10172 loss: 0.2703
|
| 633 |
+
2025/03/04 11:46:35 - mmengine - INFO - Iter(train) [ 700/19224] lr: 1.9998e-05 eta: 7:02:45 time: 0.8067 data_time: 0.0091 memory: 9872 loss: 0.3140
|
internvl_ft_run_12_filter/20250304_113017/vis_data/events.out.tfevents.1741059019.intern-studio-40019814.28433.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd425b2aca9e0b39d18b30a09b663885a921b56d30f9da0e450be82102f9a02a
|
| 3 |
+
size 23159
|
internvl_ft_run_12_filter/20250304_114757/20250304_114757.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
internvl_ft_run_12_filter/20250304_114757/vis_data/events.out.tfevents.1741060079.intern-studio-40019814.34025.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:79ff3861cce2bb33eeb67d1b5be27e2cd23b93bed47b5cfbe8aaced8a16400cb
|
| 3 |
+
size 257492
|
internvl_ft_run_12_filter/internvl_v2_internlm2_2b_qlora_finetune_copy.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accumulative_counts = 1
|
| 2 |
+
batch_size = 2
|
| 3 |
+
betas = (
|
| 4 |
+
0.9,
|
| 5 |
+
0.999,
|
| 6 |
+
)
|
| 7 |
+
custom_hooks = [
|
| 8 |
+
dict(
|
| 9 |
+
tokenizer=dict(
|
| 10 |
+
pretrained_model_name_or_path=
|
| 11 |
+
'/root/wangqun/models/internvl2-2B',
|
| 12 |
+
trust_remote_code=True,
|
| 13 |
+
type='transformers.AutoTokenizer.from_pretrained'),
|
| 14 |
+
type='xtuner.engine.hooks.DatasetInfoHook'),
|
| 15 |
+
]
|
| 16 |
+
data_path = '/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json'
|
| 17 |
+
dataloader_num_workers = 4
|
| 18 |
+
default_hooks = dict(
|
| 19 |
+
checkpoint=dict(
|
| 20 |
+
by_epoch=False,
|
| 21 |
+
interval=1000,
|
| 22 |
+
max_keep_ckpts=-1,
|
| 23 |
+
save_optimizer=False,
|
| 24 |
+
type='mmengine.hooks.CheckpointHook'),
|
| 25 |
+
logger=dict(
|
| 26 |
+
interval=10,
|
| 27 |
+
log_metric_by_epoch=False,
|
| 28 |
+
type='mmengine.hooks.LoggerHook'),
|
| 29 |
+
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
|
| 30 |
+
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
|
| 31 |
+
timer=dict(type='mmengine.hooks.IterTimerHook'))
|
| 32 |
+
env_cfg = dict(
|
| 33 |
+
cudnn_benchmark=False,
|
| 34 |
+
dist_cfg=dict(backend='nccl'),
|
| 35 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 36 |
+
image_folder = '/'
|
| 37 |
+
launcher = 'none'
|
| 38 |
+
llava_dataset = dict(
|
| 39 |
+
data_paths='/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json',
|
| 40 |
+
image_folders='/',
|
| 41 |
+
max_length=8192,
|
| 42 |
+
model_path='/root/wangqun/models/internvl2-2B',
|
| 43 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 44 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset')
|
| 45 |
+
load_from = None
|
| 46 |
+
log_level = 'DEBUG'
|
| 47 |
+
log_processor = dict(by_epoch=False)
|
| 48 |
+
lr = 2e-05
|
| 49 |
+
max_epochs = 4
|
| 50 |
+
max_length = 8192
|
| 51 |
+
max_norm = 1
|
| 52 |
+
model = dict(
|
| 53 |
+
freeze_llm=True,
|
| 54 |
+
freeze_visual_encoder=True,
|
| 55 |
+
llm_lora=dict(
|
| 56 |
+
lora_alpha=256,
|
| 57 |
+
lora_dropout=0.05,
|
| 58 |
+
r=128,
|
| 59 |
+
target_modules=None,
|
| 60 |
+
task_type='CAUSAL_LM',
|
| 61 |
+
type='peft.LoraConfig'),
|
| 62 |
+
model_path='/root/wangqun/models/internvl2-2B',
|
| 63 |
+
quantization_llm=True,
|
| 64 |
+
quantization_vit=False,
|
| 65 |
+
type='xtuner.model.InternVL_V1_5')
|
| 66 |
+
optim_type = 'torch.optim.AdamW'
|
| 67 |
+
optim_wrapper = dict(
|
| 68 |
+
optimizer=dict(
|
| 69 |
+
betas=(
|
| 70 |
+
0.9,
|
| 71 |
+
0.999,
|
| 72 |
+
),
|
| 73 |
+
lr=2e-05,
|
| 74 |
+
type='torch.optim.AdamW',
|
| 75 |
+
weight_decay=0.05),
|
| 76 |
+
type='DeepSpeedOptimWrapper')
|
| 77 |
+
param_scheduler = [
|
| 78 |
+
dict(
|
| 79 |
+
begin=0,
|
| 80 |
+
by_epoch=True,
|
| 81 |
+
convert_to_iter_based=True,
|
| 82 |
+
end=0.12,
|
| 83 |
+
start_factor=1e-05,
|
| 84 |
+
type='mmengine.optim.LinearLR'),
|
| 85 |
+
dict(
|
| 86 |
+
begin=0.12,
|
| 87 |
+
by_epoch=True,
|
| 88 |
+
convert_to_iter_based=True,
|
| 89 |
+
end=4,
|
| 90 |
+
eta_min=0.0,
|
| 91 |
+
type='mmengine.optim.CosineAnnealingLR'),
|
| 92 |
+
]
|
| 93 |
+
path = '/root/wangqun/models/internvl2-2B'
|
| 94 |
+
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
|
| 95 |
+
randomness = dict(deterministic=False, seed=None)
|
| 96 |
+
resume = False
|
| 97 |
+
runner_type = 'FlexibleRunner'
|
| 98 |
+
save_steps = 1000
|
| 99 |
+
save_total_limit = -1
|
| 100 |
+
strategy = dict(
|
| 101 |
+
config=dict(
|
| 102 |
+
bf16=dict(enabled=True),
|
| 103 |
+
fp16=dict(enabled=False, initial_scale_power=16),
|
| 104 |
+
gradient_accumulation_steps='auto',
|
| 105 |
+
gradient_clipping='auto',
|
| 106 |
+
train_micro_batch_size_per_gpu='auto',
|
| 107 |
+
zero_allow_untested_optimizer=True,
|
| 108 |
+
zero_force_ds_cpu_optimizer=False,
|
| 109 |
+
zero_optimization=dict(overlap_comm=True, stage=2)),
|
| 110 |
+
exclude_frozen_parameters=True,
|
| 111 |
+
gradient_accumulation_steps=1,
|
| 112 |
+
gradient_clipping=1,
|
| 113 |
+
sequence_parallel_size=1,
|
| 114 |
+
train_micro_batch_size_per_gpu=2,
|
| 115 |
+
type='xtuner.engine.DeepSpeedStrategy')
|
| 116 |
+
tokenizer = dict(
|
| 117 |
+
pretrained_model_name_or_path=
|
| 118 |
+
'/root/wangqun/models/internvl2-2B',
|
| 119 |
+
trust_remote_code=True,
|
| 120 |
+
type='transformers.AutoTokenizer.from_pretrained')
|
| 121 |
+
train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
|
| 122 |
+
train_dataloader = dict(
|
| 123 |
+
batch_size=2,
|
| 124 |
+
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
|
| 125 |
+
dataset=dict(
|
| 126 |
+
data_paths=
|
| 127 |
+
'/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json',
|
| 128 |
+
image_folders='/',
|
| 129 |
+
max_length=8192,
|
| 130 |
+
model_path='/root/wangqun/models/internvl2-2B',
|
| 131 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 132 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset'),
|
| 133 |
+
num_workers=4,
|
| 134 |
+
sampler=dict(
|
| 135 |
+
length_property='modality_length',
|
| 136 |
+
per_device_batch_size=2,
|
| 137 |
+
type='xtuner.dataset.samplers.LengthGroupedSampler'))
|
| 138 |
+
visualizer = dict(
|
| 139 |
+
type='mmengine.visualization.Visualizer',
|
| 140 |
+
vis_backends=[
|
| 141 |
+
dict(type='mmengine.visualization.TensorboardVisBackend'),
|
| 142 |
+
])
|
| 143 |
+
warmup_ratio = 0.03
|
| 144 |
+
weight_decay = 0.05
|
| 145 |
+
work_dir = '/root/wangqun/work_dirs/internvl_ft_run_12_filter'
|
internvl_ft_run_12_filter/iter_1000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ff54e611914bd3584430380a53da9940c23015b16917b0eb7de9fb652280f0d8
|
| 3 |
+
size 301244162
|
internvl_ft_run_12_filter/iter_2000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d42f971e9c3b56fa86cc64566873987c3b8654ac9495f287f4f8bf2e1c191472
|
| 3 |
+
size 301318338
|
internvl_ft_run_12_filter/iter_3000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb25e46fa242cc70a082db9a47c87593ff9e15290cad1e6d2bde7e4d6e58f18e
|
| 3 |
+
size 301392386
|
internvl_ft_run_12_filter/iter_4000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a2666d6ebb5c3f4476d5118e25a858ce6c628983fffbdddc5bfda13b262d60a6
|
| 3 |
+
size 301466626
|
internvl_ft_run_12_filter/iter_5000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5320f8061e8cd2d95a58555e0717bc49ba5aa06195808a762994fc2f7cf40986
|
| 3 |
+
size 301540866
|
internvl_ft_run_12_filter/iter_6000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:18a21687fe64d7dd3943dbea5cec4c0f46cc8c09d7e0e0a24cec1710e6f2e91a
|
| 3 |
+
size 301615042
|
internvl_ft_run_12_filter/iter_7000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0b9c67595b834aaabc5cb02b9faa6cecdb478f622152668fe6493675b94378f5
|
| 3 |
+
size 301689218
|
internvl_ft_run_12_filter/iter_8000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d957225a068b5fbd164698068c5df34c796ee6f58ee76438a6e00804d864447f
|
| 3 |
+
size 301763330
|
internvl_ft_run_12_filter/iter_9000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7a49c32e1fb80179256e644dcaf8ab29f19cd1c90edf14d10ff136016f8412a
|
| 3 |
+
size 301837506
|
internvl_ft_run_12_filter/iter_9612.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:167ac77f8c658792a016e1a6fe123f62036edb2cc67cf0fb40248b3feeb0c651
|
| 3 |
+
size 301882434
|
internvl_ft_run_12_filter/last_checkpoint
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
/root/wangqun/work_dirs/internvl_ft_run_12_filter/iter_9612.pth
|
internvl_ft_run_13_filter/20250304_121519/20250304_121519.log
ADDED
|
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2025/03/04 12:15:19 - mmengine - DEBUG - An `DeepSpeedStrategy` instance is built from registry, and its implementation can be found in xtuner.engine._strategy.deepspeed
|
| 2 |
+
2025/03/04 12:15:19 - mmengine - INFO -
|
| 3 |
+
------------------------------------------------------------
|
| 4 |
+
System environment:
|
| 5 |
+
sys.platform: linux
|
| 6 |
+
Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
|
| 7 |
+
CUDA available: True
|
| 8 |
+
MUSA available: False
|
| 9 |
+
numpy_random_seed: 49487546
|
| 10 |
+
GPU 0: NVIDIA A100-SXM4-80GB
|
| 11 |
+
CUDA_HOME: /usr/local/cuda
|
| 12 |
+
NVCC: Cuda compilation tools, release 12.2, V12.2.140
|
| 13 |
+
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
|
| 14 |
+
PyTorch: 2.4.1+cu121
|
| 15 |
+
PyTorch compiling details: PyTorch built with:
|
| 16 |
+
- GCC 9.3
|
| 17 |
+
- C++ Version: 201703
|
| 18 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
|
| 19 |
+
- Intel(R) MKL-DNN v3.4.2 (Git Hash 1137e04ec0b5251ca2b4400a4fd3c667ce843d67)
|
| 20 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 21 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 22 |
+
- NNPACK is enabled
|
| 23 |
+
- CPU capability usage: AVX512
|
| 24 |
+
- CUDA Runtime 12.1
|
| 25 |
+
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
|
| 26 |
+
- CuDNN 90.1 (built against CUDA 12.4)
|
| 27 |
+
- Magma 2.6.1
|
| 28 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.1, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.4.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
|
| 29 |
+
|
| 30 |
+
TorchVision: 0.19.1+cu121
|
| 31 |
+
OpenCV: 4.9.0
|
| 32 |
+
MMEngine: 0.10.6
|
| 33 |
+
|
| 34 |
+
Runtime environment:
|
| 35 |
+
launcher: none
|
| 36 |
+
randomness: {'seed': None, 'deterministic': False}
|
| 37 |
+
cudnn_benchmark: False
|
| 38 |
+
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
|
| 39 |
+
dist_cfg: {'backend': 'nccl'}
|
| 40 |
+
seed: None
|
| 41 |
+
deterministic: False
|
| 42 |
+
Distributed launcher: none
|
| 43 |
+
Distributed training: False
|
| 44 |
+
GPU number: 1
|
| 45 |
+
------------------------------------------------------------
|
| 46 |
+
|
| 47 |
+
2025/03/04 12:15:20 - mmengine - INFO - Config:
|
| 48 |
+
accumulative_counts = 2
|
| 49 |
+
batch_size = 1
|
| 50 |
+
betas = (
|
| 51 |
+
0.9,
|
| 52 |
+
0.999,
|
| 53 |
+
)
|
| 54 |
+
custom_hooks = [
|
| 55 |
+
dict(
|
| 56 |
+
tokenizer=dict(
|
| 57 |
+
pretrained_model_name_or_path=
|
| 58 |
+
'/root/share/new_models/OpenGVLab/InternVL2_5/InternVL2_5-2B',
|
| 59 |
+
trust_remote_code=True,
|
| 60 |
+
type='transformers.AutoTokenizer.from_pretrained'),
|
| 61 |
+
type='xtuner.engine.hooks.DatasetInfoHook'),
|
| 62 |
+
]
|
| 63 |
+
data_path = '/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json'
|
| 64 |
+
dataloader_num_workers = 4
|
| 65 |
+
default_hooks = dict(
|
| 66 |
+
checkpoint=dict(
|
| 67 |
+
by_epoch=False,
|
| 68 |
+
interval=1000,
|
| 69 |
+
max_keep_ckpts=-1,
|
| 70 |
+
save_optimizer=False,
|
| 71 |
+
type='mmengine.hooks.CheckpointHook'),
|
| 72 |
+
logger=dict(
|
| 73 |
+
interval=10,
|
| 74 |
+
log_metric_by_epoch=False,
|
| 75 |
+
type='mmengine.hooks.LoggerHook'),
|
| 76 |
+
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
|
| 77 |
+
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
|
| 78 |
+
timer=dict(type='mmengine.hooks.IterTimerHook'))
|
| 79 |
+
env_cfg = dict(
|
| 80 |
+
cudnn_benchmark=False,
|
| 81 |
+
dist_cfg=dict(backend='nccl'),
|
| 82 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 83 |
+
image_folder = '/'
|
| 84 |
+
launcher = 'none'
|
| 85 |
+
llava_dataset = dict(
|
| 86 |
+
data_paths='/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json',
|
| 87 |
+
image_folders='/',
|
| 88 |
+
max_length=8192,
|
| 89 |
+
model_path='/root/share/new_models/OpenGVLab/InternVL2_5/InternVL2_5-2B',
|
| 90 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 91 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset')
|
| 92 |
+
load_from = None
|
| 93 |
+
log_level = 'DEBUG'
|
| 94 |
+
log_processor = dict(by_epoch=False)
|
| 95 |
+
lr = 2e-05
|
| 96 |
+
max_epochs = 4
|
| 97 |
+
max_length = 8192
|
| 98 |
+
max_norm = 1
|
| 99 |
+
model = dict(
|
| 100 |
+
freeze_llm=True,
|
| 101 |
+
freeze_visual_encoder=True,
|
| 102 |
+
llm_lora=dict(
|
| 103 |
+
lora_alpha=256,
|
| 104 |
+
lora_dropout=0.05,
|
| 105 |
+
r=128,
|
| 106 |
+
target_modules=None,
|
| 107 |
+
task_type='CAUSAL_LM',
|
| 108 |
+
type='peft.LoraConfig'),
|
| 109 |
+
model_path='/root/share/new_models/OpenGVLab/InternVL2_5/InternVL2_5-2B',
|
| 110 |
+
quantization_llm=True,
|
| 111 |
+
quantization_vit=False,
|
| 112 |
+
type='xtuner.model.InternVL_V1_5')
|
| 113 |
+
optim_type = 'torch.optim.AdamW'
|
| 114 |
+
optim_wrapper = dict(
|
| 115 |
+
optimizer=dict(
|
| 116 |
+
betas=(
|
| 117 |
+
0.9,
|
| 118 |
+
0.999,
|
| 119 |
+
),
|
| 120 |
+
lr=2e-05,
|
| 121 |
+
type='torch.optim.AdamW',
|
| 122 |
+
weight_decay=0.05),
|
| 123 |
+
type='DeepSpeedOptimWrapper')
|
| 124 |
+
param_scheduler = [
|
| 125 |
+
dict(
|
| 126 |
+
begin=0,
|
| 127 |
+
by_epoch=True,
|
| 128 |
+
convert_to_iter_based=True,
|
| 129 |
+
end=0.12,
|
| 130 |
+
start_factor=1e-05,
|
| 131 |
+
type='mmengine.optim.LinearLR'),
|
| 132 |
+
dict(
|
| 133 |
+
begin=0.12,
|
| 134 |
+
by_epoch=True,
|
| 135 |
+
convert_to_iter_based=True,
|
| 136 |
+
end=4,
|
| 137 |
+
eta_min=0.0,
|
| 138 |
+
type='mmengine.optim.CosineAnnealingLR'),
|
| 139 |
+
]
|
| 140 |
+
path = '/root/share/new_models/OpenGVLab/InternVL2_5/InternVL2_5-2B'
|
| 141 |
+
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
|
| 142 |
+
randomness = dict(deterministic=False, seed=None)
|
| 143 |
+
resume = False
|
| 144 |
+
runner_type = 'FlexibleRunner'
|
| 145 |
+
save_steps = 1000
|
| 146 |
+
save_total_limit = -1
|
| 147 |
+
strategy = dict(
|
| 148 |
+
config=dict(
|
| 149 |
+
bf16=dict(enabled=True),
|
| 150 |
+
fp16=dict(enabled=False, initial_scale_power=16),
|
| 151 |
+
gradient_accumulation_steps='auto',
|
| 152 |
+
gradient_clipping='auto',
|
| 153 |
+
train_micro_batch_size_per_gpu='auto',
|
| 154 |
+
zero_allow_untested_optimizer=True,
|
| 155 |
+
zero_force_ds_cpu_optimizer=False,
|
| 156 |
+
zero_optimization=dict(overlap_comm=True, stage=2)),
|
| 157 |
+
exclude_frozen_parameters=True,
|
| 158 |
+
gradient_accumulation_steps=2,
|
| 159 |
+
gradient_clipping=1,
|
| 160 |
+
sequence_parallel_size=1,
|
| 161 |
+
train_micro_batch_size_per_gpu=1,
|
| 162 |
+
type='xtuner.engine.DeepSpeedStrategy')
|
| 163 |
+
tokenizer = dict(
|
| 164 |
+
pretrained_model_name_or_path=
|
| 165 |
+
'/root/share/new_models/OpenGVLab/InternVL2_5/InternVL2_5-2B',
|
| 166 |
+
trust_remote_code=True,
|
| 167 |
+
type='transformers.AutoTokenizer.from_pretrained')
|
| 168 |
+
train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
|
| 169 |
+
train_dataloader = dict(
|
| 170 |
+
batch_size=1,
|
| 171 |
+
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
|
| 172 |
+
dataset=dict(
|
| 173 |
+
data_paths=
|
| 174 |
+
'/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json',
|
| 175 |
+
image_folders='/',
|
| 176 |
+
max_length=8192,
|
| 177 |
+
model_path=
|
| 178 |
+
'/root/share/new_models/OpenGVLab/InternVL2_5/InternVL2_5-2B',
|
| 179 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 180 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset'),
|
| 181 |
+
num_workers=4,
|
| 182 |
+
sampler=dict(
|
| 183 |
+
length_property='modality_length',
|
| 184 |
+
per_device_batch_size=2,
|
| 185 |
+
type='xtuner.dataset.samplers.LengthGroupedSampler'))
|
| 186 |
+
visualizer = dict(
|
| 187 |
+
type='mmengine.visualization.Visualizer',
|
| 188 |
+
vis_backends=[
|
| 189 |
+
dict(type='mmengine.visualization.TensorboardVisBackend'),
|
| 190 |
+
])
|
| 191 |
+
warmup_ratio = 0.03
|
| 192 |
+
weight_decay = 0.05
|
| 193 |
+
work_dir = '/root/wangqun/work_dirs/internvl_ft_run_13_filter'
|
| 194 |
+
|
| 195 |
+
2025/03/04 12:15:20 - mmengine - DEBUG - An `TensorboardVisBackend` instance is built from registry, and its implementation can be found in mmengine.visualization.vis_backend
|
| 196 |
+
2025/03/04 12:15:20 - mmengine - DEBUG - An `Visualizer` instance is built from registry, and its implementation can be found in mmengine.visualization.visualizer
|
| 197 |
+
2025/03/04 12:15:20 - mmengine - DEBUG - Attribute `_env_initialized` is not defined in <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'> or `<class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized is False, `_init_env` will be called and <class 'mmengine.visualization.vis_backend.TensorboardVisBackend'>._env_initialized will be set to True
|
| 198 |
+
2025/03/04 12:15:20 - mmengine - DEBUG - Get class `RuntimeInfoHook` from "hook" registry in "mmengine"
|
| 199 |
+
2025/03/04 12:15:20 - mmengine - DEBUG - An `RuntimeInfoHook` instance is built from registry, and its implementation can be found in mmengine.hooks.runtime_info_hook
|
| 200 |
+
2025/03/04 12:15:20 - mmengine - DEBUG - An `IterTimerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.iter_timer_hook
|
| 201 |
+
2025/03/04 12:15:20 - mmengine - DEBUG - An `DistSamplerSeedHook` instance is built from registry, and its implementation can be found in mmengine.hooks.sampler_seed_hook
|
| 202 |
+
2025/03/04 12:15:20 - mmengine - DEBUG - An `LoggerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.logger_hook
|
| 203 |
+
2025/03/04 12:15:20 - mmengine - DEBUG - An `ParamSchedulerHook` instance is built from registry, and its implementation can be found in mmengine.hooks.param_scheduler_hook
|
| 204 |
+
2025/03/04 12:15:20 - mmengine - DEBUG - An `CheckpointHook` instance is built from registry, and its implementation can be found in mmengine.hooks.checkpoint_hook
|
| 205 |
+
2025/03/04 12:15:20 - mmengine - WARNING - Failed to search registry with scope "mmengine" in the "builder" registry tree. As a workaround, the current "builder" registry in "xtuner" is used to build instance. This may cause unexpected failure when running the built modules. Please check whether "mmengine" is a correct scope, or whether the registry is initialized.
|
| 206 |
+
2025/03/04 12:15:21 - mmengine - DEBUG - An `from_pretrained` instance is built from registry, and its implementation can be found in transformers.models.auto.tokenization_auto
|
| 207 |
+
2025/03/04 12:15:21 - mmengine - DEBUG - An `DatasetInfoHook` instance is built from registry, and its implementation can be found in xtuner.engine.hooks.dataset_info_hook
|
| 208 |
+
2025/03/04 12:15:21 - mmengine - INFO - Hooks will be executed in the following order:
|
| 209 |
+
before_run:
|
| 210 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 211 |
+
(BELOW_NORMAL) LoggerHook
|
| 212 |
+
--------------------
|
| 213 |
+
before_train:
|
| 214 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 215 |
+
(NORMAL ) IterTimerHook
|
| 216 |
+
(NORMAL ) DatasetInfoHook
|
| 217 |
+
(VERY_LOW ) CheckpointHook
|
| 218 |
+
--------------------
|
| 219 |
+
before_train_epoch:
|
| 220 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 221 |
+
(NORMAL ) IterTimerHook
|
| 222 |
+
(NORMAL ) DistSamplerSeedHook
|
| 223 |
+
--------------------
|
| 224 |
+
before_train_iter:
|
| 225 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 226 |
+
(NORMAL ) IterTimerHook
|
| 227 |
+
--------------------
|
| 228 |
+
after_train_iter:
|
| 229 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 230 |
+
(NORMAL ) IterTimerHook
|
| 231 |
+
(BELOW_NORMAL) LoggerHook
|
| 232 |
+
(LOW ) ParamSchedulerHook
|
| 233 |
+
(VERY_LOW ) CheckpointHook
|
| 234 |
+
--------------------
|
| 235 |
+
after_train_epoch:
|
| 236 |
+
(NORMAL ) IterTimerHook
|
| 237 |
+
(LOW ) ParamSchedulerHook
|
| 238 |
+
(VERY_LOW ) CheckpointHook
|
| 239 |
+
--------------------
|
| 240 |
+
before_val:
|
| 241 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 242 |
+
(NORMAL ) DatasetInfoHook
|
| 243 |
+
--------------------
|
| 244 |
+
before_val_epoch:
|
| 245 |
+
(NORMAL ) IterTimerHook
|
| 246 |
+
--------------------
|
| 247 |
+
before_val_iter:
|
| 248 |
+
(NORMAL ) IterTimerHook
|
| 249 |
+
--------------------
|
| 250 |
+
after_val_iter:
|
| 251 |
+
(NORMAL ) IterTimerHook
|
| 252 |
+
(BELOW_NORMAL) LoggerHook
|
| 253 |
+
--------------------
|
| 254 |
+
after_val_epoch:
|
| 255 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 256 |
+
(NORMAL ) IterTimerHook
|
| 257 |
+
(BELOW_NORMAL) LoggerHook
|
| 258 |
+
(LOW ) ParamSchedulerHook
|
| 259 |
+
(VERY_LOW ) CheckpointHook
|
| 260 |
+
--------------------
|
| 261 |
+
after_val:
|
| 262 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 263 |
+
--------------------
|
| 264 |
+
after_train:
|
| 265 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 266 |
+
(VERY_LOW ) CheckpointHook
|
| 267 |
+
--------------------
|
| 268 |
+
before_test:
|
| 269 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 270 |
+
(NORMAL ) DatasetInfoHook
|
| 271 |
+
--------------------
|
| 272 |
+
before_test_epoch:
|
| 273 |
+
(NORMAL ) IterTimerHook
|
| 274 |
+
--------------------
|
| 275 |
+
before_test_iter:
|
| 276 |
+
(NORMAL ) IterTimerHook
|
| 277 |
+
--------------------
|
| 278 |
+
after_test_iter:
|
| 279 |
+
(NORMAL ) IterTimerHook
|
| 280 |
+
(BELOW_NORMAL) LoggerHook
|
| 281 |
+
--------------------
|
| 282 |
+
after_test_epoch:
|
| 283 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 284 |
+
(NORMAL ) IterTimerHook
|
| 285 |
+
(BELOW_NORMAL) LoggerHook
|
| 286 |
+
--------------------
|
| 287 |
+
after_test:
|
| 288 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 289 |
+
--------------------
|
| 290 |
+
after_run:
|
| 291 |
+
(BELOW_NORMAL) LoggerHook
|
| 292 |
+
--------------------
|
| 293 |
+
2025/03/04 12:15:21 - mmengine - DEBUG - An `FlexibleRunner` instance is built from registry, its implementation can be found inmmengine.runner._flexible_runner
|
| 294 |
+
2025/03/04 12:15:21 - mmengine - INFO - Starting to loading data and calc length
|
| 295 |
+
2025/03/04 12:15:21 - mmengine - INFO - =======Starting to process /root/data/tempData/screenshot_od/layout_ocr_multi_scale.json =======
|
| 296 |
+
2025/03/04 12:15:28 - mmengine - INFO - =======total 4806 samples of /root/data/tempData/screenshot_od/layout_ocr_multi_scale.json=======
|
| 297 |
+
2025/03/04 12:15:28 - mmengine - INFO - end loading data and calc length
|
| 298 |
+
2025/03/04 12:15:28 - mmengine - INFO - =======total 4806 samples=======
|
| 299 |
+
2025/03/04 12:15:28 - mmengine - DEBUG - An `InternVL_V1_5_Dataset` instance is built from registry, and its implementation can be found in xtuner.dataset.internvl_dataset
|
| 300 |
+
2025/03/04 12:15:28 - mmengine - INFO - LengthGroupedSampler is used.
|
| 301 |
+
2025/03/04 12:15:28 - mmengine - INFO - LengthGroupedSampler construction is complete, and the selected attribute is modality_length
|
| 302 |
+
2025/03/04 12:15:28 - mmengine - DEBUG - An `LengthGroupedSampler` instance is built from registry, and its implementation can be found in xtuner.dataset.samplers.length_grouped
|
| 303 |
+
2025/03/04 12:15:28 - mmengine - WARNING - Dataset InternVL_V1_5_Dataset has no metainfo. ``dataset_meta`` in visualizer will be None.
|
| 304 |
+
2025/03/04 12:15:28 - mmengine - DEBUG - An `TrainLoop` instance is built from registry, and its implementation can be found in xtuner.engine.runner.loops
|
| 305 |
+
2025/03/04 12:15:28 - mmengine - INFO - Start to load InternVL_V1_5 model.
|
| 306 |
+
2025/03/04 12:15:28 - mmengine - DEBUG - Get class `BaseDataPreprocessor` from "model" registry in "mmengine"
|
| 307 |
+
2025/03/04 12:15:28 - mmengine - DEBUG - An `BaseDataPreprocessor` instance is built from registry, and its implementation can be found in mmengine.model.base_model.data_preprocessor
|
| 308 |
+
2025/03/04 12:15:55 - mmengine - DEBUG - An `LoraConfig` instance is built from registry, and its implementation can be found in peft.tuners.lora.config
|
| 309 |
+
2025/03/04 12:15:58 - mmengine - INFO - InternVL_V1_5(
|
| 310 |
+
(data_preprocessor): BaseDataPreprocessor()
|
| 311 |
+
(model): InternVLChatModel(
|
| 312 |
+
(vision_model): InternVisionModel(
|
| 313 |
+
(embeddings): InternVisionEmbeddings(
|
| 314 |
+
(patch_embedding): Conv2d(3, 1024, kernel_size=(14, 14), stride=(14, 14))
|
| 315 |
+
)
|
| 316 |
+
(encoder): InternVisionEncoder(
|
| 317 |
+
(layers): ModuleList(
|
| 318 |
+
(0-23): 24 x InternVisionEncoderLayer(
|
| 319 |
+
(attn): InternAttention(
|
| 320 |
+
(qkv): Linear(in_features=1024, out_features=3072, bias=True)
|
| 321 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
| 322 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
| 323 |
+
(proj): Linear(in_features=1024, out_features=1024, bias=True)
|
| 324 |
+
)
|
| 325 |
+
(mlp): InternMLP(
|
| 326 |
+
(act): GELUActivation()
|
| 327 |
+
(fc1): Linear(in_features=1024, out_features=4096, bias=True)
|
| 328 |
+
(fc2): Linear(in_features=4096, out_features=1024, bias=True)
|
| 329 |
+
)
|
| 330 |
+
(norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
|
| 331 |
+
(norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
|
| 332 |
+
(drop_path1): Identity()
|
| 333 |
+
(drop_path2): Identity()
|
| 334 |
+
)
|
| 335 |
+
)
|
| 336 |
+
)
|
| 337 |
+
)
|
| 338 |
+
(language_model): PeftModelForCausalLM(
|
| 339 |
+
(base_model): LoraModel(
|
| 340 |
+
(model): InternLM2ForCausalLM(
|
| 341 |
+
(model): InternLM2Model(
|
| 342 |
+
(tok_embeddings): Embedding(92553, 2048, padding_idx=2)
|
| 343 |
+
(layers): ModuleList(
|
| 344 |
+
(0-23): 24 x InternLM2DecoderLayer(
|
| 345 |
+
(attention): InternLM2Attention(
|
| 346 |
+
(wqkv): lora.Linear(
|
| 347 |
+
(base_layer): Linear4bit(in_features=2048, out_features=4096, bias=False)
|
| 348 |
+
(lora_dropout): ModuleDict(
|
| 349 |
+
(default): Dropout(p=0.05, inplace=False)
|
| 350 |
+
)
|
| 351 |
+
(lora_A): ModuleDict(
|
| 352 |
+
(default): Linear(in_features=2048, out_features=128, bias=False)
|
| 353 |
+
)
|
| 354 |
+
(lora_B): ModuleDict(
|
| 355 |
+
(default): Linear(in_features=128, out_features=4096, bias=False)
|
| 356 |
+
)
|
| 357 |
+
(lora_embedding_A): ParameterDict()
|
| 358 |
+
(lora_embedding_B): ParameterDict()
|
| 359 |
+
(lora_magnitude_vector): ModuleDict()
|
| 360 |
+
)
|
| 361 |
+
(wo): lora.Linear(
|
| 362 |
+
(base_layer): Linear4bit(in_features=2048, out_features=2048, bias=False)
|
| 363 |
+
(lora_dropout): ModuleDict(
|
| 364 |
+
(default): Dropout(p=0.05, inplace=False)
|
| 365 |
+
)
|
| 366 |
+
(lora_A): ModuleDict(
|
| 367 |
+
(default): Linear(in_features=2048, out_features=128, bias=False)
|
| 368 |
+
)
|
| 369 |
+
(lora_B): ModuleDict(
|
| 370 |
+
(default): Linear(in_features=128, out_features=2048, bias=False)
|
| 371 |
+
)
|
| 372 |
+
(lora_embedding_A): ParameterDict()
|
| 373 |
+
(lora_embedding_B): ParameterDict()
|
| 374 |
+
(lora_magnitude_vector): ModuleDict()
|
| 375 |
+
)
|
| 376 |
+
(rotary_emb): InternLM2DynamicNTKScalingRotaryEmbedding()
|
| 377 |
+
)
|
| 378 |
+
(feed_forward): InternLM2MLP(
|
| 379 |
+
(w1): lora.Linear(
|
| 380 |
+
(base_layer): Linear4bit(in_features=2048, out_features=8192, bias=False)
|
| 381 |
+
(lora_dropout): ModuleDict(
|
| 382 |
+
(default): Dropout(p=0.05, inplace=False)
|
| 383 |
+
)
|
| 384 |
+
(lora_A): ModuleDict(
|
| 385 |
+
(default): Linear(in_features=2048, out_features=128, bias=False)
|
| 386 |
+
)
|
| 387 |
+
(lora_B): ModuleDict(
|
| 388 |
+
(default): Linear(in_features=128, out_features=8192, bias=False)
|
| 389 |
+
)
|
| 390 |
+
(lora_embedding_A): ParameterDict()
|
| 391 |
+
(lora_embedding_B): ParameterDict()
|
| 392 |
+
(lora_magnitude_vector): ModuleDict()
|
| 393 |
+
)
|
| 394 |
+
(w3): lora.Linear(
|
| 395 |
+
(base_layer): Linear4bit(in_features=2048, out_features=8192, bias=False)
|
| 396 |
+
(lora_dropout): ModuleDict(
|
| 397 |
+
(default): Dropout(p=0.05, inplace=False)
|
| 398 |
+
)
|
| 399 |
+
(lora_A): ModuleDict(
|
| 400 |
+
(default): Linear(in_features=2048, out_features=128, bias=False)
|
| 401 |
+
)
|
| 402 |
+
(lora_B): ModuleDict(
|
| 403 |
+
(default): Linear(in_features=128, out_features=8192, bias=False)
|
| 404 |
+
)
|
| 405 |
+
(lora_embedding_A): ParameterDict()
|
| 406 |
+
(lora_embedding_B): ParameterDict()
|
| 407 |
+
(lora_magnitude_vector): ModuleDict()
|
| 408 |
+
)
|
| 409 |
+
(w2): lora.Linear(
|
| 410 |
+
(base_layer): Linear4bit(in_features=8192, out_features=2048, bias=False)
|
| 411 |
+
(lora_dropout): ModuleDict(
|
| 412 |
+
(default): Dropout(p=0.05, inplace=False)
|
| 413 |
+
)
|
| 414 |
+
(lora_A): ModuleDict(
|
| 415 |
+
(default): Linear(in_features=8192, out_features=128, bias=False)
|
| 416 |
+
)
|
| 417 |
+
(lora_B): ModuleDict(
|
| 418 |
+
(default): Linear(in_features=128, out_features=2048, bias=False)
|
| 419 |
+
)
|
| 420 |
+
(lora_embedding_A): ParameterDict()
|
| 421 |
+
(lora_embedding_B): ParameterDict()
|
| 422 |
+
(lora_magnitude_vector): ModuleDict()
|
| 423 |
+
)
|
| 424 |
+
(act_fn): SiLU()
|
| 425 |
+
)
|
| 426 |
+
(attention_norm): InternLM2RMSNorm()
|
| 427 |
+
(ffn_norm): InternLM2RMSNorm()
|
| 428 |
+
)
|
| 429 |
+
)
|
| 430 |
+
(norm): InternLM2RMSNorm()
|
| 431 |
+
)
|
| 432 |
+
(output): lora.Linear(
|
| 433 |
+
(base_layer): Linear4bit(in_features=2048, out_features=92553, bias=False)
|
| 434 |
+
(lora_dropout): ModuleDict(
|
| 435 |
+
(default): Dropout(p=0.05, inplace=False)
|
| 436 |
+
)
|
| 437 |
+
(lora_A): ModuleDict(
|
| 438 |
+
(default): Linear(in_features=2048, out_features=128, bias=False)
|
| 439 |
+
)
|
| 440 |
+
(lora_B): ModuleDict(
|
| 441 |
+
(default): Linear(in_features=128, out_features=92553, bias=False)
|
| 442 |
+
)
|
| 443 |
+
(lora_embedding_A): ParameterDict()
|
| 444 |
+
(lora_embedding_B): ParameterDict()
|
| 445 |
+
(lora_magnitude_vector): ModuleDict()
|
| 446 |
+
)
|
| 447 |
+
)
|
| 448 |
+
)
|
| 449 |
+
)
|
| 450 |
+
(mlp1): Sequential(
|
| 451 |
+
(0): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
|
| 452 |
+
(1): Linear(in_features=4096, out_features=2048, bias=True)
|
| 453 |
+
(2): GELU(approximate='none')
|
| 454 |
+
(3): Linear(in_features=2048, out_features=2048, bias=True)
|
| 455 |
+
)
|
| 456 |
+
)
|
| 457 |
+
)
|
| 458 |
+
2025/03/04 12:15:58 - mmengine - INFO - InternVL_V1_5 construction is complete
|
| 459 |
+
2025/03/04 12:15:58 - mmengine - DEBUG - An `InternVL_V1_5` instance is built from registry, and its implementation can be found in xtuner.model.internvl
|
| 460 |
+
2025/03/04 12:15:58 - mmengine - DEBUG - Get class `DefaultOptimWrapperConstructor` from "optimizer wrapper constructor" registry in "mmengine"
|
| 461 |
+
2025/03/04 12:15:58 - mmengine - DEBUG - An `DefaultOptimWrapperConstructor` instance is built from registry, and its implementation can be found in mmengine.optim.optimizer.default_constructor
|
| 462 |
+
2025/03/04 12:15:58 - mmengine - DEBUG - An `AdamW` instance is built from registry, and its implementation can be found in torch.optim.adamw
|
| 463 |
+
2025/03/04 12:15:58 - mmengine - DEBUG - Get class `DeepSpeedOptimWrapper` from "optim_wrapper" registry in "mmengine"
|
| 464 |
+
2025/03/04 12:15:58 - mmengine - DEBUG - An `DeepSpeedOptimWrapper` instance is built from registry, and its implementation can be found in mmengine._strategy.deepspeed
|
internvl_ft_run_13_filter/20250304_121519/vis_data/events.out.tfevents.1741061720.intern-studio-40019814.41268.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:46db7041eca09f33cd2c42f058a3f2665a3e1928517a93cb3132aa388a2accdb
|
| 3 |
+
size 4914
|
internvl_ft_run_13_filter/20250304_213711/20250304_213711.log
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
internvl_ft_run_13_filter/20250304_213711/vis_data/events.out.tfevents.1741095432.intern-studio-40019814.159243.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1d38718bec644b61e1e53b07ceca6b2c0adb59aedff598ab38d1fa9244ac23d0
|
| 3 |
+
size 512032
|
internvl_ft_run_13_filter/internvl_v2_internlm2_2b_qlora_finetune_copy.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accumulative_counts = 2
|
| 2 |
+
batch_size = 1
|
| 3 |
+
betas = (
|
| 4 |
+
0.9,
|
| 5 |
+
0.999,
|
| 6 |
+
)
|
| 7 |
+
custom_hooks = [
|
| 8 |
+
dict(
|
| 9 |
+
tokenizer=dict(
|
| 10 |
+
pretrained_model_name_or_path=
|
| 11 |
+
'/data/wangqun/models/InternVL2_5-2B',
|
| 12 |
+
trust_remote_code=True,
|
| 13 |
+
type='transformers.AutoTokenizer.from_pretrained'),
|
| 14 |
+
type='xtuner.engine.hooks.DatasetInfoHook'),
|
| 15 |
+
]
|
| 16 |
+
data_path = '/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json'
|
| 17 |
+
dataloader_num_workers = 4
|
| 18 |
+
default_hooks = dict(
|
| 19 |
+
checkpoint=dict(
|
| 20 |
+
by_epoch=False,
|
| 21 |
+
interval=1000,
|
| 22 |
+
max_keep_ckpts=-1,
|
| 23 |
+
save_optimizer=False,
|
| 24 |
+
type='mmengine.hooks.CheckpointHook'),
|
| 25 |
+
logger=dict(
|
| 26 |
+
interval=10,
|
| 27 |
+
log_metric_by_epoch=False,
|
| 28 |
+
type='mmengine.hooks.LoggerHook'),
|
| 29 |
+
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
|
| 30 |
+
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
|
| 31 |
+
timer=dict(type='mmengine.hooks.IterTimerHook'))
|
| 32 |
+
env_cfg = dict(
|
| 33 |
+
cudnn_benchmark=False,
|
| 34 |
+
dist_cfg=dict(backend='nccl'),
|
| 35 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 36 |
+
image_folder = '/'
|
| 37 |
+
launcher = 'none'
|
| 38 |
+
llava_dataset = dict(
|
| 39 |
+
data_paths='/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json',
|
| 40 |
+
image_folders='/',
|
| 41 |
+
max_length=8192,
|
| 42 |
+
model_path='/data/wangqun/models/InternVL2_5-2B',
|
| 43 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 44 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset')
|
| 45 |
+
load_from = None
|
| 46 |
+
log_level = 'DEBUG'
|
| 47 |
+
log_processor = dict(by_epoch=False)
|
| 48 |
+
lr = 2e-05
|
| 49 |
+
max_epochs = 4
|
| 50 |
+
max_length = 8192
|
| 51 |
+
max_norm = 1
|
| 52 |
+
model = dict(
|
| 53 |
+
freeze_llm=True,
|
| 54 |
+
freeze_visual_encoder=True,
|
| 55 |
+
llm_lora=dict(
|
| 56 |
+
lora_alpha=256,
|
| 57 |
+
lora_dropout=0.05,
|
| 58 |
+
r=128,
|
| 59 |
+
target_modules=None,
|
| 60 |
+
task_type='CAUSAL_LM',
|
| 61 |
+
type='peft.LoraConfig'),
|
| 62 |
+
model_path='/data/wangqun/models/InternVL2_5-2B',
|
| 63 |
+
quantization_llm=True,
|
| 64 |
+
quantization_vit=False,
|
| 65 |
+
type='xtuner.model.InternVL_V1_5')
|
| 66 |
+
optim_type = 'torch.optim.AdamW'
|
| 67 |
+
optim_wrapper = dict(
|
| 68 |
+
optimizer=dict(
|
| 69 |
+
betas=(
|
| 70 |
+
0.9,
|
| 71 |
+
0.999,
|
| 72 |
+
),
|
| 73 |
+
lr=2e-05,
|
| 74 |
+
type='torch.optim.AdamW',
|
| 75 |
+
weight_decay=0.05),
|
| 76 |
+
type='DeepSpeedOptimWrapper')
|
| 77 |
+
param_scheduler = [
|
| 78 |
+
dict(
|
| 79 |
+
begin=0,
|
| 80 |
+
by_epoch=True,
|
| 81 |
+
convert_to_iter_based=True,
|
| 82 |
+
end=0.12,
|
| 83 |
+
start_factor=1e-05,
|
| 84 |
+
type='mmengine.optim.LinearLR'),
|
| 85 |
+
dict(
|
| 86 |
+
begin=0.12,
|
| 87 |
+
by_epoch=True,
|
| 88 |
+
convert_to_iter_based=True,
|
| 89 |
+
end=4,
|
| 90 |
+
eta_min=0.0,
|
| 91 |
+
type='mmengine.optim.CosineAnnealingLR'),
|
| 92 |
+
]
|
| 93 |
+
path = '/data/wangqun/models/InternVL2_5-2B'
|
| 94 |
+
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
|
| 95 |
+
randomness = dict(deterministic=False, seed=None)
|
| 96 |
+
resume = False
|
| 97 |
+
runner_type = 'FlexibleRunner'
|
| 98 |
+
save_steps = 1000
|
| 99 |
+
save_total_limit = -1
|
| 100 |
+
strategy = dict(
|
| 101 |
+
config=dict(
|
| 102 |
+
bf16=dict(enabled=True),
|
| 103 |
+
fp16=dict(enabled=False, initial_scale_power=16),
|
| 104 |
+
gradient_accumulation_steps='auto',
|
| 105 |
+
gradient_clipping='auto',
|
| 106 |
+
train_micro_batch_size_per_gpu='auto',
|
| 107 |
+
zero_allow_untested_optimizer=True,
|
| 108 |
+
zero_force_ds_cpu_optimizer=False,
|
| 109 |
+
zero_optimization=dict(overlap_comm=True, stage=2)),
|
| 110 |
+
exclude_frozen_parameters=True,
|
| 111 |
+
gradient_accumulation_steps=2,
|
| 112 |
+
gradient_clipping=1,
|
| 113 |
+
sequence_parallel_size=1,
|
| 114 |
+
train_micro_batch_size_per_gpu=1,
|
| 115 |
+
type='xtuner.engine.DeepSpeedStrategy')
|
| 116 |
+
tokenizer = dict(
|
| 117 |
+
pretrained_model_name_or_path=
|
| 118 |
+
'/data/wangqun/models/InternVL2_5-2B',
|
| 119 |
+
trust_remote_code=True,
|
| 120 |
+
type='transformers.AutoTokenizer.from_pretrained')
|
| 121 |
+
train_cfg = dict(max_epochs=4, type='xtuner.engine.runner.TrainLoop')
|
| 122 |
+
train_dataloader = dict(
|
| 123 |
+
batch_size=1,
|
| 124 |
+
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
|
| 125 |
+
dataset=dict(
|
| 126 |
+
data_paths=
|
| 127 |
+
'/root/data/tempData/screenshot_od/layout_ocr_multi_scale.json',
|
| 128 |
+
image_folders='/',
|
| 129 |
+
max_length=8192,
|
| 130 |
+
model_path=
|
| 131 |
+
'/data/wangqun/models/InternVL2_5-2B',
|
| 132 |
+
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
|
| 133 |
+
type='xtuner.dataset.InternVL_V1_5_Dataset'),
|
| 134 |
+
num_workers=4,
|
| 135 |
+
sampler=dict(
|
| 136 |
+
length_property='modality_length',
|
| 137 |
+
per_device_batch_size=2,
|
| 138 |
+
type='xtuner.dataset.samplers.LengthGroupedSampler'))
|
| 139 |
+
visualizer = dict(
|
| 140 |
+
type='mmengine.visualization.Visualizer',
|
| 141 |
+
vis_backends=[
|
| 142 |
+
dict(type='mmengine.visualization.TensorboardVisBackend'),
|
| 143 |
+
])
|
| 144 |
+
warmup_ratio = 0.03
|
| 145 |
+
weight_decay = 0.05
|
| 146 |
+
work_dir = '/root/wangqun/work_dirs/internvl_ft_run_13_filter'
|
internvl_ft_run_13_filter/iter_1000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b24f6c6bd3851bce9ce45f4bba96fdbcee632c7c622ebe837ec5b973085bbb73
|
| 3 |
+
size 301244994
|
internvl_ft_run_13_filter/iter_10000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1c692ec736bd23df366f5c00daad06614571f7fca440f7964cff27fbfd8bb3e
|
| 3 |
+
size 301920578
|
internvl_ft_run_13_filter/iter_11000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea8fcd7154e0d6ded70bc9e6b67d7a1a8cf59c57c566eeb6bea962cf721f1591
|
| 3 |
+
size 301995330
|
internvl_ft_run_13_filter/iter_12000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:43f6034da940b55224f9205875cc2740bfccc058a3f145d0b7bcaccd115536f5
|
| 3 |
+
size 302070338
|
internvl_ft_run_13_filter/iter_13000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92bfbc4a13bfd7b0eea33d12fc9615ec744297673ed571cd140f40871481f46d
|
| 3 |
+
size 302145474
|
internvl_ft_run_13_filter/iter_14000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b0eb4fa01c3378ea8eb3acf2b084fa954a72d29fcf63b2bfe27553d61e79fb8b
|
| 3 |
+
size 302220482
|
internvl_ft_run_13_filter/iter_15000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1bd81bba2007b30f19aa53382d801968c7f349487162031fe2dc8ebd823e4c27
|
| 3 |
+
size 302295490
|
internvl_ft_run_13_filter/iter_16000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8603f7e271fcefb72f50bf1397f05f03b55505c3272e4680fdfa27c4de9dc157
|
| 3 |
+
size 302370562
|
internvl_ft_run_13_filter/iter_17000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3d9041144ef0a48ad437e9ce94558444dbbc6c485d9a779048f6fe08a44e324a
|
| 3 |
+
size 302445570
|
internvl_ft_run_13_filter/iter_18000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1032dda4ee201c9f851825745b001b30864d7c84cdb11ace42b1d9ffa70be77b
|
| 3 |
+
size 302520514
|
internvl_ft_run_13_filter/iter_19000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f17fa3c628a60d737567747eb440d606b0ee0fa89bf4c8f5acbcb48e13e3089f
|
| 3 |
+
size 302594882
|
internvl_ft_run_13_filter/iter_19224.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75eca927c93ffe7129d4f1fc84bdeb42a6563e6bc97c1f66d98a17dd1f479ae6
|
| 3 |
+
size 302611458
|
internvl_ft_run_13_filter/iter_2000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:039ecebe9872764ca4c96ff04029e8921a938cad5ad026009a090270788aad4b
|
| 3 |
+
size 301320450
|
internvl_ft_run_13_filter/iter_3000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:779c990e71dfbac4e0c18606852eb8f564bb232947404a0342a4c06c2792e2e9
|
| 3 |
+
size 301395330
|
internvl_ft_run_13_filter/iter_4000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:85bd648ac928cf3e76058af3404fb87ce098e5e05dc6e126707f1a5318f74119
|
| 3 |
+
size 301470594
|
internvl_ft_run_13_filter/iter_5000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a9378786acb4c41e9f719d475acb3806e467e198d0ca929ae82880e8b826ff06
|
| 3 |
+
size 301545538
|
internvl_ft_run_13_filter/iter_6000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f5341528784c8762d29de4b7d16e32266b87ee3aade8daede3996d4a6fc6989e
|
| 3 |
+
size 301620546
|