all-MiniLM-L6-v2-klej-dyk-v0.1
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'Sen o zastrzyku Irmy',
'gdzie Freud spotkał Irmę we śnie o zastrzyku Irmy?',
'ile razy Srebrna Biblia była przywożona do Szwecji?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1995 |
| cosine_accuracy@3 |
0.4303 |
| cosine_accuracy@5 |
0.5385 |
| cosine_accuracy@10 |
0.6226 |
| cosine_precision@1 |
0.1995 |
| cosine_precision@3 |
0.1434 |
| cosine_precision@5 |
0.1077 |
| cosine_precision@10 |
0.0623 |
| cosine_recall@1 |
0.1995 |
| cosine_recall@3 |
0.4303 |
| cosine_recall@5 |
0.5385 |
| cosine_recall@10 |
0.6226 |
| cosine_ndcg@10 |
0.4068 |
| cosine_mrr@10 |
0.3377 |
| cosine_map@100 |
0.3452 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1851 |
| cosine_accuracy@3 |
0.4135 |
| cosine_accuracy@5 |
0.5096 |
| cosine_accuracy@10 |
0.6034 |
| cosine_precision@1 |
0.1851 |
| cosine_precision@3 |
0.1378 |
| cosine_precision@5 |
0.1019 |
| cosine_precision@10 |
0.0603 |
| cosine_recall@1 |
0.1851 |
| cosine_recall@3 |
0.4135 |
| cosine_recall@5 |
0.5096 |
| cosine_recall@10 |
0.6034 |
| cosine_ndcg@10 |
0.3911 |
| cosine_mrr@10 |
0.3234 |
| cosine_map@100 |
0.3304 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.1803 |
| cosine_accuracy@3 |
0.3534 |
| cosine_accuracy@5 |
0.4423 |
| cosine_accuracy@10 |
0.5192 |
| cosine_precision@1 |
0.1803 |
| cosine_precision@3 |
0.1178 |
| cosine_precision@5 |
0.0885 |
| cosine_precision@10 |
0.0519 |
| cosine_recall@1 |
0.1803 |
| cosine_recall@3 |
0.3534 |
| cosine_recall@5 |
0.4423 |
| cosine_recall@10 |
0.5192 |
| cosine_ndcg@10 |
0.3443 |
| cosine_mrr@10 |
0.2889 |
| cosine_map@100 |
0.296 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.137 |
| cosine_accuracy@3 |
0.2644 |
| cosine_accuracy@5 |
0.3221 |
| cosine_accuracy@10 |
0.3798 |
| cosine_precision@1 |
0.137 |
| cosine_precision@3 |
0.0881 |
| cosine_precision@5 |
0.0644 |
| cosine_precision@10 |
0.038 |
| cosine_recall@1 |
0.137 |
| cosine_recall@3 |
0.2644 |
| cosine_recall@5 |
0.3221 |
| cosine_recall@10 |
0.3798 |
| cosine_ndcg@10 |
0.2529 |
| cosine_mrr@10 |
0.2129 |
| cosine_map@100 |
0.2209 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,738 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 7 tokens
- mean: 87.54 tokens
- max: 256 tokens
|
- min: 9 tokens
- mean: 30.98 tokens
- max: 76 tokens
|
- Samples:
| positive |
anchor |
Zespół Blaua (zespół Jabsa, ang. Blau syndrome, BS) – rzadka choroba genetyczna o dziedziczeniu autosomalnym dominującym, charakteryzująca się ziarniniakowym zapaleniem stawów o wczesnym początku, zapaleniem jagodówki (uveitis) i wysypką skórną, a także kamptodaktylią. |
jakie choroby genetyczne dziedziczą się autosomalnie dominująco? |
Gorgippia Gorgippia – starożytne miasto bosporańskie nad Morzem Czarnym, którego pozostałości znajdują się obecnie pod współczesną zabudową centralnej części miasta Anapa w Kraju Krasnodarskim w Rosji. |
gdzie obecnie znajduje się starożytne miasto Gorgippia? |
Ulubionym dystansem Rücker było 400 metrów i to na nim notowała największe indywidualne sukcesy : srebrny medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) 6. miejsce w Pucharze Świata w Lekkoatletyce (Hawana 1992) 5. miejsce na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) srebro podczas Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) złota medalistka mistrzostw Niemiec Duże sukcesy odnosiła także w sztafecie 4 x 400 metrów : złoto Mistrzostw Europy juniorów w lekkoatletyce (Varaždin 1989) złoty medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) brąz na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) brązowy medal podczas Igrzysk Olimpijskich (Atlanta 1996) brąz na Halowych Mistrzostwach Świata w Lekkoatletyce (Paryż 1997) złoto Mistrzostw Świata w Lekkoatletyce (Ateny 1997) brązowy medal Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) |
kto zaprojektował medale, które będą wręczane podczas tegorocznych mistrzostw Europy juniorów w lekkoatletyce? |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
gradient_accumulation_steps: 32
learning_rate: 2e-05
num_train_epochs: 5
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: True
tf32: True
load_best_model_at_end: True
optim: adamw_torch_fused
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 32
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 5
max_steps: -1
lr_scheduler_type: cosine
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: True
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_384_cosine_map@100 |
dim_64_cosine_map@100 |
| 0 |
0 |
- |
0.1945 |
0.2243 |
0.2302 |
0.1499 |
| 0.2735 |
1 |
8.2585 |
- |
- |
- |
- |
| 0.5470 |
2 |
8.4215 |
- |
- |
- |
- |
| 0.8205 |
3 |
7.899 |
0.2205 |
0.2510 |
0.2597 |
0.1677 |
| 1.0855 |
4 |
6.5734 |
- |
- |
- |
- |
| 1.3590 |
5 |
6.2406 |
- |
- |
- |
- |
| 1.6325 |
6 |
6.0949 |
- |
- |
- |
- |
| 1.9060 |
7 |
5.7149 |
0.2736 |
0.3061 |
0.3224 |
0.2124 |
| 2.1709 |
8 |
5.153 |
- |
- |
- |
- |
| 2.4444 |
9 |
5.3615 |
- |
- |
- |
- |
| 2.7179 |
10 |
5.3069 |
- |
- |
- |
- |
| 2.9915 |
11 |
5.1567 |
0.2914 |
0.3238 |
0.3402 |
0.2191 |
| 3.2564 |
12 |
4.6824 |
- |
- |
- |
- |
| 3.5299 |
13 |
5.1072 |
- |
- |
- |
- |
| 3.8034 |
14 |
5.1575 |
0.2967 |
0.3302 |
0.3443 |
0.2196 |
| 4.0684 |
15 |
4.5651 |
0.2960 |
0.3304 |
0.3452 |
0.2209 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}