ce / README.md
omarkamali's picture
Upload all models and assets for ce (latest)
32f8b6a verified
metadata
language: ce
language_name: Chechen
language_family: caucasian_northeast
tags:
  - wikilangs
  - nlp
  - tokenizer
  - embeddings
  - n-gram
  - markov
  - wikipedia
  - feature-extraction
  - sentence-similarity
  - tokenization
  - n-grams
  - markov-chain
  - text-mining
  - fasttext
  - babelvec
  - vocabulous
  - vocabulary
  - monolingual
  - family-caucasian_northeast
license: mit
library_name: wikilangs
pipeline_tag: text-generation
datasets:
  - omarkamali/wikipedia-monthly
dataset_info:
  name: wikipedia-monthly
  description: Monthly snapshots of Wikipedia articles across 300+ languages
metrics:
  - name: best_compression_ratio
    type: compression
    value: 3.737
  - name: best_isotropy
    type: isotropy
    value: 0.8747
  - name: vocabulary_size
    type: vocab
    value: 0
generated: 2026-01-03T00:00:00.000Z

Chechen - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Chechen Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

📋 Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 2.792x 2.80 0.9605% 541,154
16k 3.113x 3.12 1.0708% 485,447
32k 3.423x 3.43 1.1775% 441,435
64k 3.737x 🏆 3.74 1.2855% 404,354

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Бейца (Бихор) Бейца (Клуж) Бейца (Марамуреш) Бейца (Муреш) Бейца (Хунедоара) Бей...

Vocab Tokens Count
8k ▁бей ца ▁( б их ор ) ▁бей ца ▁( ... (+30 more) 40
16k ▁бей ца ▁( б ихор ) ▁бей ца ▁( к ... (+24 more) 34
32k ▁бей ца ▁( бихор ) ▁бей ца ▁( клуж ) ... (+20 more) 30
64k ▁бейца ▁( бихор ) ▁бейца ▁( клуж ) ▁бейца ▁( ... (+14 more) 24

Sample 2: Киякты (Актобен область) Киякты (Мангистаунан область)

Vocab Tokens Count
8k ▁к ия кт ы ▁( акт обен ▁область ) ▁к ... (+10 more) 20
16k ▁к ия кты ▁( акт обен ▁область ) ▁к ия ... (+8 more) 18
32k ▁кия кты ▁( актобен ▁область ) ▁кия кты ▁( ман ... (+3 more) 13
64k ▁кия кты ▁( актобен ▁область ) ▁кия кты ▁( мангистаунан ... (+2 more) 12

Sample 3: ХӀаджали (40° 14' N 47° 16' E), (Бардан кӀошт) ХӀаджали (40° 27' N 47° 05' E), (...

Vocab Tokens Count
8k ▁хӏа дж али ▁( 4 0 ° ▁ 1 4 ... (+44 more) 54
16k ▁хӏадж али ▁( 4 0 ° ▁ 1 4 ' ... (+42 more) 52
32k ▁хӏадж али ▁( 4 0 ° ▁ 1 4 ' ... (+40 more) 50
64k ▁хӏадж али ▁( 4 0 ° ▁ 1 4 ' ... (+40 more) 50

Key Findings

  • Best Compression: 64k achieves 3.737x compression
  • Lowest UNK Rate: 8k with 0.9605% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 3,390 11.73 113,212 22.9% 62.3%
2-gram Subword 435 🏆 8.77 6,171 54.5% 98.0%
3-gram Word 4,361 12.09 176,983 18.9% 57.8%
3-gram Subword 2,517 11.30 59,082 23.1% 68.3%
4-gram Word 5,357 12.39 387,928 16.4% 55.1%
4-gram Subword 6,651 12.70 339,742 15.1% 48.5%
5-gram Word 5,776 12.50 363,840 15.2% 53.7%
5-gram Subword 11,240 13.46 966,556 12.7% 40.2%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 нах беха 1,039,295
2 беха меттигаш 953,014
3 билгалдахарш хьажоргаш 387,484
4 климат кхузахь 314,080
5 кхузахь климат 293,860

3-grams (Word):

Rank N-gram Count
1 нах беха меттигаш 952,977
2 климат кхузахь климат 274,749
3 кӏоштан нах беха 256,927
4 бахархой билгалдахарш хьажоргаш 156,557
5 ред а м 153,110

4-grams (Word):

Rank N-gram Count
1 кӏоштан нах беха меттигаш 256,923
2 лелаш ду сахьтан аса 134,397
3 нийса лелаш ду сахьтан 134,397
4 сахьтан аса йу utc 133,768
5 ду сахьтан аса йу 133,768

5-grams (Word):

Rank N-gram Count
1 нийса лелаш ду сахьтан аса 134,397
2 ду сахьтан аса йу utc 133,768
3 лелаш ду сахьтан аса йу 133,768
4 индексаш кӏоштан нах беха меттигаш 122,584
5 аьхка йовха хуьлу ткъа ӏа 113,661

2-grams (Subword):

Rank N-gram Count
1 а _ 10,875,281
2 . _ 9,874,426
3 н _ 8,151,111
4 а н 7,675,531
5 р а 6,751,030

3-grams (Subword):

Rank N-gram Count
1 а н _ 4,716,126
2 _ — _ 2,941,993
3 р а _ 2,306,576
4 а ш _ 2,292,649
5 а х ь 2,054,431

4-grams (Subword):

Rank N-gram Count
1 т а н _ 1,577,468
2 а х а р 1,505,060
3 а _ м е 1,193,821
4 а х ь _ 1,177,180
5 _ м е т 1,177,138

5-grams (Subword):

Rank N-gram Count
1 _ м е т т 1,166,495
2 м е т т и 1,154,656
3 е т т и г 1,154,628
4 а _ м е т 1,067,312
5 _ н а х _ 1,048,954

Key Findings

  • Best Perplexity: 2-gram (subword) with 435
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~40% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.6776 1.600 4.20 526,205 32.2%
1 Subword 0.9453 1.926 9.06 1,550 5.5%
2 Word 0.1950 1.145 1.49 2,194,953 80.5%
2 Subword 0.9623 1.948 7.39 14,021 3.8%
3 Word 0.0756 1.054 1.15 3,239,505 92.4%
3 Subword 0.8389 1.789 4.99 103,540 16.1%
4 Word 0.0367 🏆 1.026 1.08 3,672,181 96.3%
4 Subword 0.7073 1.633 3.29 516,039 29.3%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. а зонехьклимат тверской области бахархойн дукхалла бахархойн дукхалла бахархойн дукхалла климат йу л...
  2. нах беха меттигаш жудецан нах беха меттигаш штатан йукъахь дара кочими монки гуайкура перику индейн ...
  3. беха меттигаш нах беха меттигаш нисйина нах беха меттигаш нисйина нах беха меттигаш кӏоштан индексаш...

Context Size 2:

  1. нах беха меттигаш нах беха меттигаш лаха калифорни штатан йукъахь йу бахархой билгалдахарш литератур...
  2. беха меттигаш воеводаллин нах беха меттигаш нисйина нах беха меттигаш нисйина нах беха меттигаш нах ...
  3. билгалдахарш хьажоргаш спас деменскан кӏошт калугин областан спас деменскан кӏоштара дӏатесна эвла б...

Context Size 3:

  1. нах беха меттигаш кӏоштан нах беха меттигаш штатан нах беха меттигаш штатан нах беха меттигаш штатан...
  2. климат кхузахь климат йу лаьттайуккъера хӏордан барамехь йекъа а йовха ӏа шийла ца хуьйлат а галкина...
  3. кӏоштан нах беха меттигаш штатан нах беха меттигаш нах беха меттигаш нисйина нах беха меттигаш нисйи...

Context Size 4:

  1. лелаш ду сахьтан аса йу utc 3 билгалдахарш хьажоргаш устьян кӏоштан индексаш кӏоштан нах беха меттиг...
  2. нийса лелаш ду сахьтан аса йу utc 3 билгалдахарш хьажоргаш приморскан кӏоштан индексаш областан прим...
  3. ду сахьтан аса йу utc 7 билгалдахарш мохк

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _йаду_—_н_бще_вх
  2. анташ_гахахарха_
  3. нцалальталарклус

Context Size 2:

  1. а_хила_дуьлинецес
  2. ._у-фактябра_эххь
  3. н_йоккъах_бехь_ст

Context Size 3:

  1. ан_областан_сизал_
  2. _—_январь_современ
  3. ра_хьолехьажоргаш_

Context Size 4:

  1. тан_асан_коммунан_х
  2. ахарш_хьажоргаши_(д
  3. а_меттигаш_коммунан

Key Findings

  • Best Predictability: Context-4 (word) with 96.3% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (516,039 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 238,347
Total Tokens 67,032,110
Mean Frequency 281.24
Median Frequency 3
Frequency Std Dev 8160.67

Most Common Words

Rank Word Frequency
1 а 1,815,637
2 нах 1,049,193
3 беха 1,039,696
4 меттигаш 968,757
5 йу 814,157
6 м 798,557
7 климат 741,272
8 в 736,957
9 билгалдахарш 631,076
10 с 588,454

Least Common Words (from vocabulary)

Rank Word Frequency
1 эмпачадо 2
2 энано 2
3 эскопетал 2
4 эскриторио 2
5 макариос 2
6 эроика 2
7 скирринг 2
8 зигуинчор 2
9 зигуиншор 2
10 люксембургхо 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 1.8633
R² (Goodness of Fit) 0.948539
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 41.8%
Top 1,000 83.4%
Top 5,000 96.8%
Top 10,000 97.8%

Key Findings

  • Zipf Compliance: R²=0.9485 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 41.8% of corpus
  • Long Tail: 228,347 words needed for remaining 2.2% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.8747 0.3629 N/A N/A
mono_64d 64 0.8592 0.2868 N/A N/A
mono_128d 128 0.7998 0.2691 N/A N/A
aligned_32d 32 0.8747 🏆 0.3562 0.0120 0.0960
aligned_64d 64 0.8592 0.3007 0.0320 0.2180
aligned_128d 128 0.7998 0.2615 0.1100 0.3620

Key Findings

  • Best Isotropy: aligned_32d with 0.8747 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.3062. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 11.0% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap 0.335 High formulaic/idiomatic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-ка каркаусь, кассагумахи, кафка
-ко костровскан, коховка, колумбехь

Productive Suffixes

Suffix Examples
ледара, жиховка, масленка
галийн, кувшин, самодийн
белшево, санторо, эрцо
-ан тӏаьрсиган, менделеевскан, костровскан
-во белшево, миллерово, горяново
-ка жиховка, масленка, раковка
-ово миллерово, горяново, атынаково
-ки недниковски, новокубански, ибараки

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
архо 2.00x 121 contexts архон, лархо, тархо
исто 1.91x 130 contexts мисто, чисто, исток
галд 2.88x 16 contexts галда, галдо, галдун
ргаш 2.28x 34 contexts ургаш, воргаш, мургаш
харх 2.14x 41 contexts йахарх, хархув, мухарх
икин 1.84x 62 contexts викин, рикин, бикин
халл 1.55x 92 contexts халле, халль, халла
рхой 2.30x 19 contexts лархой, сурхой, ахархой
лгал 2.36x 17 contexts билгал, билгало, билгала
игаш 2.34x 17 contexts бигаш, цигаш, эхигаш
етти 1.73x 42 contexts бетти, нетти, петтит
ттиг 1.96x 25 contexts меттиг, гаттиг, ме́ттиг

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-ко 44 words комната, колохта
-ка 40 words кастелларо, карманково
-ка 38 words казчана, кажа
-ко 35 words корково, кощейково
-ка 27 words кассон, капланецкан
-ко 23 words конкистадоран, коюнлун
-ко -во 17 words корково, кощейково
-ка -во 16 words карманково, каптырево
-ка -ан 15 words капланецкан, каштан
-ко -ан 13 words конкистадоран, котован

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
евдокимовски евдокимовс-ки 4.5 евдокимовс
заказникан заказник-ан 4.5 заказник
череповецан череповец-ан 4.5 череповец
господиново господин-ово 4.5 господин
вайнахана вайнаха-на 4.5 вайнаха
воротынскан воротынск-ан 4.5 воротынск
кинофильман кинофильм-ан 4.5 кинофильм
дийцаршна дийцарш-на 4.5 дийцарш
театрашка театраш-ка 4.5 театраш
федотован федотов-ан 4.5 федотов
веселовка веселов-ка 4.5 веселов
маядыково маядык-ово 4.5 маядык
ходоровка ходоров-ка 4.5 ходоров
новиковски новиковс-ки 4.5 новиковс
меженашна меженаш-на 4.5 меженаш

6.6 Linguistic Interpretation

Automated Insight: The language Chechen shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.

Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (3.74x)
N-gram 2-gram Lowest perplexity (435)
Markov Context-4 Highest predictability (96.3%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

R² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-03 20:55:32