Udmurt - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Udmurt Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.543x | 3.55 | 0.1375% | 258,898 |
| 16k | 3.952x | 3.96 | 0.1534% | 232,054 |
| 32k | 4.311x | 4.32 | 0.1673% | 212,774 |
| 64k | 4.565x π | 4.57 | 0.1772% | 200,933 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: ΠΠ°ΠΉΡΠ°Π½ΡΡΡ () β Π£Π΄ΠΌΡΡΡΠΈΡΡΡ ΠΏΠΈΡΠΈ ΡΡΡ. ΠΡΠ·Π΅ Π―Ρ ΡΡΠΎΡΠ»ΡΠ½ ΠΌΡΠ·ΡΠ΅ΠΌΠ΅ΡΣ₯Π· Π½ΠΎ ΡΡΠ΅ Π’ΡΠΌ ΡΡΡΠ΅. ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠ±Π°ΠΉ ΡΠ°Π½ ΡΡΡ β() ββ βΡΠ΄ΠΌΡΡΡΠΈΡΡΡ βΠΏΠΈΡΠΈ βΡΡΡ . βΠ±ΡΠ·Π΅ ... (+23 more) |
33 |
| 16k | βΠ±Π°ΠΉ ΡΠ°Π½ ΡΡΡ β() ββ βΡΠ΄ΠΌΡΡΡΠΈΡΡΡ βΠΏΠΈΡΠΈ βΡΡΡ . βΠ±ΡΠ·Π΅ ... (+22 more) |
32 |
| 32k | βΠ±Π°ΠΉΡΠ°Π½ ΡΡΡ β() ββ βΡΠ΄ΠΌΡΡΡΠΈΡΡΡ βΠΏΠΈΡΠΈ βΡΡΡ . βΠ±ΡΠ·Π΅ βΡΡ ... (+20 more) |
30 |
| 64k | βΠ±Π°ΠΉΡΠ°Π½ΡΡΡ β() ββ βΡΠ΄ΠΌΡΡΡΠΈΡΡΡ βΠΏΠΈΡΠΈ βΡΡΡ . βΠ±ΡΠ·Π΅ βΡΡ βΡΡΠΎΡΠ»ΡΠ½ ... (+19 more) |
29 |
Sample 2: ΠΠ»Π΅ΡΡ ΠΡΡΠ°ΠΊΠΈΠ²ΡΡΠΊΠ° (; ΠΠΈΠ΅Π², Π‘Π‘Π‘Π , β Π£ΠΊΡΠ°ΠΈΠ½ Π°ΠΊΡΡΠΈΡΠ°. Π€ΠΈΠ»ΡΠΌΡΡΡ ΠΡΡΡΠΎΠ² ΠΠΎΠ½Π±Π°Ρ Π°Π»ΡΠ°Π²ΠΈ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠΎΠ» Π΅Ρ Ρ βΠΆ ΡΡ Π°ΠΊ ΠΈΠ² ΡΡΠΊΠ° β(; βΠΊΠΈΠ΅Π² ... (+13 more) |
23 |
| 16k | βΠΎΠ» Π΅Ρ Ρ βΠΆ ΡΡ Π°ΠΊ ΠΈΠ² ΡΡΠΊΠ° β(; βΠΊΠΈΠ΅Π² ... (+12 more) |
22 |
| 32k | βΠΎΠ» Π΅ΡΡ βΠΆΡΡ Π°ΠΊΠΈΠ² ΡΡΠΊΠ° β(; βΠΊΠΈΠ΅Π² , βΡΡΡΡ , ... (+9 more) |
19 |
| 64k | βΠΎΠ» Π΅ΡΡ βΠΆΡΡΠ°ΠΊΠΈΠ² ΡΡΠΊΠ° β(; βΠΊΠΈΠ΅Π² , βΡΡΡΡ , ββ ... (+8 more) |
18 |
Sample 3: ΠΡΠΈΠ²ΠΎΠΉ Π ΠΎΠ³ ΠΌΠ΅ΡΡΠΎΡΡΠ°ΠΌ ( ΡΠΊΡ. ΠΡΠΈΠ²ΠΎΡΡΠ·ΡΠΊΠΈΠΉ ΡΠ²ΠΈΠ΄ΠΊΡΡΠ½ΠΈΠΉ ΡΡΠ°ΠΌΠ²Π°ΠΉ )
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠΊΡ ΠΈΠ² ΠΎΠΉ βΡΠΎ Π³ βΠΌΠ΅ΡΡΠΎ Ρ ΡΠ°ΠΌ β( βΡΠΊ ... (+17 more) |
27 |
| 16k | βΠΊΡΠΈΠ² ΠΎΠΉ βΡΠΎΠ³ βΠΌΠ΅ΡΡΠΎ Ρ ΡΠ°ΠΌ β( βΡΠΊ Ρ . ... (+12 more) |
22 |
| 32k | βΠΊΡΠΈΠ² ΠΎΠΉ βΡΠΎΠ³ βΠΌΠ΅ΡΡΠΎ ΡΡΠ°ΠΌ β( βΡΠΊΡ . βΠΊΡΠΈΠ² ΠΎΡ ... (+10 more) |
20 |
| 64k | βΠΊΡΠΈΠ²ΠΎΠΉ βΡΠΎΠ³ βΠΌΠ΅ΡΡΠΎΡΡΠ°ΠΌ β( βΡΠΊΡ . βΠΊΡΠΈΠ² ΠΎΡ Ρ Π·Ρ ... (+5 more) |
15 |
Key Findings
- Best Compression: 64k achieves 4.565x compression
- Lowest UNK Rate: 8k with 0.1375% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 4,224 | 12.04 | 9,045 | 20.2% | 51.2% |
| 2-gram | Subword | 646 π | 9.34 | 3,769 | 43.9% | 95.6% |
| 3-gram | Word | 4,567 | 12.16 | 10,317 | 20.4% | 49.5% |
| 3-gram | Subword | 5,398 | 12.40 | 30,259 | 15.9% | 50.6% |
| 4-gram | Word | 9,357 | 13.19 | 19,488 | 14.9% | 37.3% |
| 4-gram | Subword | 23,964 | 14.55 | 134,461 | 8.6% | 28.8% |
| 5-gram | Word | 7,868 | 12.94 | 14,631 | 14.0% | 37.7% |
| 5-gram | Subword | 56,525 | 15.79 | 261,817 | 5.4% | 21.0% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | j j |
743 |
| 2 | 1 ΡΣ₯ |
662 |
| 3 | synonym of |
638 |
| 4 | now synonym |
606 |
| 5 | rchb f |
601 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | now synonym of |
604 |
| 2 | j j sm |
569 |
| 3 | ΡΡΠΎΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡ |
559 |
| 4 | Π°ΡΡΠ½ 1 ΡΣ₯ |
533 |
| 5 | 1 ΡΣ₯ ΡΠΎΠ»ΡΠΎΡΠ΅ |
490 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π°ΡΡΠ½ 1 ΡΣ₯ ΡΠΎΠ»ΡΠΎΡΠ΅ |
484 |
| 2 | ΡΠ»Σ₯ΡΡΡΡ Π°ΡΡΠ½ 1 ΡΣ₯ |
482 |
| 3 | 1 ΡΣ₯ ΡΠΎΠ»ΡΠΎΡΠ΅ Π³ΡΡΡΡΠ½ |
478 |
| 4 | ΡΡΠΎΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡ ΡΡΠΎΡΡΡΡ |
414 |
| 5 | ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡ ΡΡΠΎΡΡΡΡ Π³ΡΡΡΡΡΡ |
414 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ΡΠ»Σ₯ΡΡΡΡ Π°ΡΡΠ½ 1 ΡΣ₯ ΡΠΎΠ»ΡΠΎΡΠ΅ |
482 |
| 2 | Π°ΡΡΠ½ 1 ΡΣ₯ ΡΠΎΠ»ΡΠΎΡΠ΅ Π³ΡΡΡΡΠ½ |
478 |
| 3 | ΡΡΠΎΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡ ΡΡΠΎΡΡΡΡ Π³ΡΡΡΡΡΡ |
414 |
| 4 | Π°Π΄ΡΠΌΠΈ Π»ΡΠ΄ΡΡΡΡΠΊΠΈΠ· ΡΡΠΎΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡ |
404 |
| 5 | Π»ΡΠ΄ΡΡΡΡΠΊΠΈΠ· ΡΡΠΎΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡ ΡΡΠΎΡΡΡΡ |
396 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π½ _ |
53,739 |
| 2 | . _ |
52,122 |
| 3 | Ρ Ρ |
44,748 |
| 4 | _ ΠΊ |
43,958 |
| 5 | , _ |
37,972 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Ρ Ρ _ |
23,826 |
| 2 | _ β _ |
21,444 |
| 3 | Ρ Ρ Ρ |
19,313 |
| 4 | Ρ Ρ Ρ |
19,179 |
| 5 | Ρ Π½ _ |
19,081 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Ρ Ρ Ρ _ |
17,835 |
| 2 | Π» Ρ Π½ _ |
16,383 |
| 3 | _ Π½ ΠΎ _ |
10,521 |
| 4 | . _ β _ |
9,347 |
| 5 | Ρ Ρ Ρ _ |
7,031 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Ρ Π΄ ΠΌ Ρ Ρ |
5,330 |
| 2 | Π΄ ΠΌ Ρ Ρ Ρ |
5,329 |
| 3 | _ Ρ Π΄ ΠΌ Ρ |
4,783 |
| 4 | _ Ρ Ρ ΠΎ Ρ |
4,592 |
| 5 | ΠΈ Ρ Ρ Ρ _ |
4,529 |
Key Findings
- Best Perplexity: 2-gram (subword) with 646
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~21% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.6992 | 1.624 | 3.81 | 87,992 | 30.1% |
| 1 | Subword | 0.9862 | 1.981 | 7.60 | 1,200 | 1.4% |
| 2 | Word | 0.1500 | 1.110 | 1.29 | 333,544 | 85.0% |
| 2 | Subword | 0.9701 | 1.959 | 6.05 | 9,108 | 3.0% |
| 3 | Word | 0.0464 | 1.033 | 1.08 | 427,340 | 95.4% |
| 3 | Subword | 0.8614 | 1.817 | 4.08 | 55,078 | 13.9% |
| 4 | Word | 0.0213 π | 1.015 | 1.04 | 457,825 | 97.9% |
| 4 | Subword | 0.5986 | 1.514 | 2.45 | 224,742 | 40.1% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
Π½ΠΎ ΡΡΠΊΠ°ΡΠ΅ Π°ΡΠ°Π΅Π· Π°Π³Π½Π΅ΡΠΊΠ° Π½ΠΎ Π΄ΡΠ½Π°ΠΉ ΠΌΠΌ ΠΏΠ°Π»Π° Π°Π΄ΡΠΌΠΈ Π»ΡΠ΄ΡΡΡΡΠΊΠΈΠ· ΠΏΡΡΠ³Π° ΡΡΠΎΡΠ»ΡΠ½ ΠΌΡΠ·ΡΠ΅ΠΌΠ΅ΡΣ₯Π· ΡΡΠ½Π΄Ρ ΠΏΡΠΊΡΡΠ½ ΠΏΠ°Π»Π»...Π°ΡΡΠ½ 1 58 Π°ΡΡΠ½ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π±Π΅ΡΠ΅ ΠΊΡΠ·ΠΎΠ½ Π½Π΅ΡΡΠ΅ΡΠ°Π·Π²Π΅Π΄ΠΊΠ° ΡΡΠ°ΡΡΠΎΠΊΡΡΡ ΡΠ°Π΄ ΡΡΠΎΡΡΠ½ ΠΊΠ°ΠΌΠ±Π°ΡΠΊΠ° ΠΊΠ°ΡΡΠ½ ΠΊΠ°Π·Π°Ρ ΡΡΠ°Π½...ΡΣ₯ ΠΌΠ°Π΅ ΠΏΠΈΡΠΈ ΠΏΡΡΠ³Π°ΡΡΡ ΡΠ΅Π»ΡΠ»Π΅ΡΡ ΠΎΠ· ΠΎΠ·ΡΡ ΠΈΠΊ ΡΠ΅Π·ΡΡ ΠΊΣ§ΠΆΡ ΣΡΠΊ ΠΏΣ§Π·ΡΡΠΎ Π²Σ§ΡΡΡΡ Π±Π΅ΡΠ΅ Π±Π°ΡΡΠ΅Π² ΡΠΎΡΠΈΠ½ ΣΡΡ
Context Size 2:
j j wood in j j sm ex koord schum galeola kuhlii rchb f hook f summerh1 ΡΣ₯ ΡΠΎΠ»ΡΠΎΡΠ΅ Π³ΡΡΡΡΠ½ 77 Π°Π΄ΡΠΌΠΈ Π»ΡΠ΄ΡΡΡΡΠΊΠΈΠ· ΡΡΠΎΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡ ΡΡΠΎΡΡΡΡ Π³ΡΡΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡΡΡ ΡΡΠΎΡΡΡΡ ΡΠ»...synonym of didactylus paradoxa luer dalstrΓΆm ΡΠΊΠ²Π°Π΄ΠΎΡ stelis nana lindl ΡΠΊΠ²Π°Π΄ΠΎΡ stelis pudens luer ΡΠΊ...
Context Size 3:
now synonym of crocodeilanthe cauliflora lindl luer pleurothallis pilostoma ΠΊΠΎΡΡΠ° ΡΠΈΠΊΠ° now synonym o...j j sm liparis cyperifolia ridl liparis dalessandroi dodson liparis dalzellii hook f liparis xanthin...Π°ΡΡΠ½ 1 ΡΣ₯ ΡΠΎΠ»ΡΠΎΡΠ΅ Π³ΡΡΡΡΠ½ 378 Π°Π΄ΡΠΌΠΈ Π»ΡΠ΄ΡΡΡΡΠΊΠΈΠ· ΡΡΠΎΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡ ΡΡΠΎΡΡΡΡ Π³ΡΡΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡΡΡ
Context Size 4:
Π°ΡΡΠ½ 1 ΡΣ₯ ΡΠΎΠ»ΡΠΎΡΠ΅ Π³ΡΡΡΡΠ½ 1 Π°Π΄ΡΠΌΠΈ Π»ΡΠ΄ΡΡΡΡΠΊΠΈΠ· ΠΏΡΡΠ³Π° ΡΡΠΎΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡ ΠΏΡΡΠ³Π° ΡΡΠΎΡΡΡΡ Π³ΡΡΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½Ρ...ΡΠ»Σ₯ΡΡΡΡ Π°ΡΡΠ½ 1 ΡΣ₯ ΡΠΎΠ»ΡΠΎΡΠ΅ Π³ΡΡΡΡΠ½ 82 Π°Π΄ΡΠΌΠΈ Π»ΡΠ΄ΡΡΡΡΠΊΠΈΠ· ΡΡΠΎΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡ ΡΡΠΎΡΡΡΡ Π³ΡΡΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡ...1 ΡΣ₯ ΡΠΎΠ»ΡΠΎΡΠ΅ Π³ΡΡΡΡΠ½ 43 Π°Π΄ΡΠΌΠΈ Π»ΡΠ΄ΡΡΡΡΠΊΠΈΠ· ΡΡΠΎΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡ ΡΡΠΎΡΡΡΡ Π³ΡΡΡΡΡΡ ΡΠ»ΠΎΠ½ ΠΈΠ½ΡΡΠΎΡΡΡ
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_ΠΊΠ΅Π½ΡΡΡ_ΡΡΠ½ΠΈ_._Π΄Π°ΠΉ,_ΠΊΡΠ΅ΡΡΠΏΡΡΠΊΠ°Π½ΡΡΡ._taccyncrs_Π²Π°
Context Size 2:
Π½_1-ΡΣ₯ΡΡ_Π±ΠΎΠ»ΠΎΡ._e._β_Π²ΡΠ»ΡΡΠΎΠ²ΠΈΡΠΈΡ_(ΡΡ._β_aglowiedipt
Context Size 3:
ΡΡ_Π²ΡΠ»Ρ_Π²Π΅Π½Π³ΡΠ°Π²_ΠΌΠΎ_β_ΠΊΠΎΡΡΡ_ΡΠ°Π΄ΠΎΠ²ΠΎ_ΠΏΡΡΡΡ_Π΅Π²ΡΠΎΠΊ_(hoehne_
Context Size 4:
ΡΡΡ_ΡΠ»ΠΎΡ,_ΠΊΡΠ±ΠΈΠΊΠ΅Ρ_ΡΠ»ΡΠ½_Π±ΡΠ΄ΣΠ°Π»Π°Π·_Π΄Σ₯ΡΡΠΊΠΎ_Π½ΠΎ_ΠΏΠΈΡΠΈ_Π»ΡΡΡΠ°._Π°._
Key Findings
- Best Predictability: Context-4 (word) with 97.9% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (224,742 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 35,258 |
| Total Tokens | 485,306 |
| Mean Frequency | 13.76 |
| Median Frequency | 3 |
| Frequency Std Dev | 88.68 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | Π½ΠΎ | 10,962 |
| 2 | Π°ΡΡΠ½ | 3,468 |
| 3 | ΡΣ₯ | 2,839 |
| 4 | ΡΠ΄ΠΌΡΡΡ | 2,798 |
| 5 | luer | 2,289 |
| 6 | Π³ΡΡΡ | 2,284 |
| 7 | ΡΡΠΎΡΡΡΡ | 2,189 |
| 8 | 1 | 2,085 |
| 9 | ΡΠΎ | 1,987 |
| 10 | j | 1,734 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | ΡΠ΅Π»Π΅Π³ΡΠ°ΠΌ | 2 |
| 2 | ΡΠ΅ΠΌΠΈΠ½ΠΈΠ·ΠΌΠ»Ρ | 2 |
| 3 | Π²ΠΎΡΡΠΈΠ½Π° | 2 |
| 4 | ΡΠ΅ΠΌΠΈΠ½ΠΈΠ·ΠΌ | 2 |
| 5 | Π³Π»ΠΎΠ±Π°Π»ΠΈΡΡΡΡΡΠ»ΡΠ½ | 2 |
| 6 | ΠΏΠ΅Π»ΡΠΌΠ΅Π½Ρ | 2 |
| 7 | ΡΠ΅ΠΊΡΠ° | 2 |
| 8 | Π²Π΅ΡΡΠΈΠΎΠ·Ρ | 2 |
| 9 | Π²Π΅ΡΠ°ΡΡΠΊΠ΅Ρ | 2 |
| 10 | ΡΡΠΈΡ | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 1.0076 |
| RΒ² (Goodness of Fit) | 0.990825 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 22.1% |
| Top 1,000 | 54.2% |
| Top 5,000 | 76.3% |
| Top 10,000 | 85.1% |
Key Findings
- Zipf Compliance: RΒ²=0.9908 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 22.1% of corpus
- Long Tail: 25,258 words needed for remaining 14.9% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.6980 | 0.3482 | N/A | N/A |
| mono_64d | 64 | 0.4125 | 0.3188 | N/A | N/A |
| mono_128d | 128 | 0.0749 | 0.3189 | N/A | N/A |
| aligned_32d | 32 | 0.6980 π | 0.3505 | 0.0080 | 0.1280 |
| aligned_64d | 64 | 0.4125 | 0.3252 | 0.0260 | 0.1660 |
| aligned_128d | 128 | 0.0749 | 0.3271 | 0.0420 | 0.1880 |
Key Findings
- Best Isotropy: aligned_32d with 0.6980 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.3314. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 4.2% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | 0.793 | High formulaic/idiomatic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-ΠΊ |
ΠΊΠΈΡ, ΠΊΡΠ±ΠΎΠΊΠ°Π·, ΠΊΠΎΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ |
-Ρ |
ΡΠΏΠΈΡΠΎΠΊΠ΅Π·Π»ΡΠ½, ΡΠ΅ΡΠ΅ΠΌ, ΡΡΡΡΠ΅Π°Π»ΠΈΠ·ΠΌ |
-ΠΏ |
ΠΏΠ΅ΡΡΠ°, ΠΏΡΠΎΠΊΡΡΠΎΡΠ΅Π·, ΠΏΣ§ΠΉΡΡΡΠ°Π»ΠΎ |
-Π² |
Π²ΡΠΆΠΎΠ½Π½ΠΈ, Π²ΡΠΆΡΡΡΡΡΡΠ·Ρ, Π²Π°Π»Π°Π· |
-Π± |
Π±Π΅ΡΠ»ΠΈΠ½Ρ, Π±Π°Π²Π°ΡΠΈΡΡΡ, Π±ΠΎΡΠΎΠΊ |
-Π° |
Π°Π»ΠΆΠΈΡΠ»ΡΠ½, Π°Π²ΡΡΡΠΈΡ, Π°Π»Π΅ΠΊΡΠ°Π½Π΄ΡΠΎΠ²ΠΈΡ |
-ΠΌ |
ΠΌΠ°Π·ΡΠ½ΠΈΠ½ΡΠΊΠΎΠΉ, ΠΌΠ΅Ρ Π°Π½ΠΈΠΊ, ΠΌΠΎΠ·ΠΌΡΡΣ₯ΡΡ |
-Ρ |
ΡΠ΅Π°ΡΡΠ°Π»ΡΠ½Π°Ρ, ΡΠ΅ΠΎΡΠΈΠ΅Π½, ΡΠ°Π»ΠΈΠ±ΡΡΡΠ»Ρ |
Productive Suffixes
| Suffix | Examples |
|---|---|
-Π½ |
Π°Π»ΠΆΠΈΡΠ»ΡΠ½, Π³Π²ΠΈΠ½Π΅ΡΡΠ½, Π½Π°Π±Π΅ΡΠ΅ΠΆΠ½ΠΎΠΉΡΠ½ |
-ΡΠ½ |
Π°Π»ΠΆΠΈΡΠ»ΡΠ½, ΡΠ΅Ρ Π΅Π·Π»ΡΠ½, Π΅Π»ΡΡΠΈΠ½Π»ΡΠ½ |
-a |
parvula, michelia, glaucophylla |
-Π· |
Π²Π°Π»Π°Π·, ΠΊΡΠ±ΠΎΠΊΠ°Π·, ΠΏΡΠΎΠΊΡΡΠΎΡΠ΅Π· |
-ΡΡ |
Π±Π°Π²Π°ΡΠΈΡΡΡ, ΠΌΠΎΠ·ΠΌΡΡΣ₯ΡΡ, Π΄ΡΡΠ΅ΠΌΠ»ΡΡΡ |
-Ρ |
Π±Π°Π²Π°ΡΠΈΡΡΡ, ΠΌΠΎΠ·ΠΌΡΡΣ₯ΡΡ, Π΄ΡΡΠ΅ΠΌΠ»ΡΡΡ |
-ΡΠ½ |
Π³Π²ΠΈΠ½Π΅ΡΡΠ½, Π½Π°Π±Π΅ΡΠ΅ΠΆΠ½ΠΎΠΉΡΠ½, Π΅Π²ΡΠΎΠΏΠ°ΡΠ½ |
-Ρ |
Π²ΡΠΆΡΡΡΡΡΡΠ·Ρ, ΣΡΡΣ₯ΡΡΠΊΠΈΠ·Ρ, ΡΡΠ΄Σ₯ΡΡΠ»Ρ |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
ΠΈΡΡΠΊ |
1.61x | 95 contexts | ΠΈΡΡΠΊΠ΅ΠΌ, ΠΌΠΈΡΡΠΊΠΎΠ½, ΠΈΡΡΠΊΠ΅ΠΌΠ΅ |
anth |
2.47x | 18 contexts | euanthe, panther, anthrax |
ΡΡΡΡ |
1.67x | 59 contexts | ΡΡΡΡΡΡ, ΠΊΡΡΡΡΡ, ΠΊΠ°ΡΡΡΡ |
ΡΡΠΌΡ |
2.15x | 22 contexts | ΠΈΡΡΠΌΡΠ½, Π°ΠΊΡΡΠΌΡΡ, Π²Π°ΡΡΠΌΡΠ½ |
ΡΡΡΡ |
1.52x | 81 contexts | Σ§ΡΡΡΡ, Π°ΡΡΡΡ, ΡΡΡΡΡΡ |
ΡΣ₯ΡΡ |
1.61x | 61 contexts | ΠΊΡΡΣ₯ΡΡ, ΡΡΡΣ₯ΡΡ, ΠΏΠΎΡΣ₯ΡΡ |
ΡΠΌΡΠ½ |
2.07x | 23 contexts | ΡΠ»ΡΠΌΡΠ½, Π°Π»ΡΠΌΡΠ½, Π»ΡΡΠΌΡΠ½ |
ΡΡΡΡ |
1.46x | 83 contexts | ΠΎΠΆΡΡΡΡ, Π°ΡΡΡΡΡ, ΡΠΆΡΡΡΡΠ· |
ΡΠΊΠΎΠΉ |
2.07x | 20 contexts | ΡΡΠ΄ΡΠΊΠΎΠΉ, ΡΠΈΠΆΡΠΊΠΎΠΉ, Π²ΠΎΡΡΠΊΠΎΠΉ |
Π½ΡΡΡ |
1.70x | 39 contexts | Π΄ΡΠ½ΡΡΡ, Π²ΡΠ½ΡΡΡ, ΡΠΈΠ½ΡΡΡ |
ΡΡΡΠΊ |
1.57x | 28 contexts | ΡΡΡΡΠΊΠ°, ΡΡΡΡΠΊΠ°Π΅, ΡΡΡΡΠΊΠ°Ρ |
Π΅ΠΌΡΠ½ |
1.71x | 18 contexts | Π²Π°Π΅ΠΌΡΠ½, ΠΎΡΠ΅ΠΌΡΠ½, ΡΡΠ΅ΠΌΡΠ½ |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-ΠΊ |
-Π½ |
157 words | ΠΊΡΠ±Π΅ΡΡΠ΅Π½, ΠΊΡΠ΄ΡΠΌΠΊΠ°ΡΡΠ½ |
-Ρ |
-Π½ |
71 words | ΡΡΠΎΠΏΠΈΠ½ΠΈΠ½, ΡΡΠ°ΠΊΡΡΠ½ |
-ΠΏ |
-Π½ |
70 words | ΠΏΠ΅ΡΡΠΎΠ²ΠΈΡΠ»ΡΠ½, ΠΏΠ»Π°Π½ |
-ΠΊ |
-Π· |
70 words | ΠΊΠ°ΡΡΠ½ΡΠ·, ΠΊΠΎΠ»Π»Π΅Π³ΠΈΠ΅Π· |
-ΠΊ |
-Ρ |
64 words | ΠΊΠΈΠ²Π°Π»ΡΣ₯ΡΠ΅Π·Π»Ρ, ΠΊΡΠ·ΡΡΠΌΠ»Ρ |
-ΠΏ |
-Π· |
64 words | ΠΏΡΡΠΎΠ½ΡΠ·, ΠΏΠ°Π»ΠΎΠ·ΡΠ· |
-ΠΊ |
-ΡΠ½ |
64 words | ΠΊΠΈΠ²Π°Π»ΡΡΡΡΠ·Π»ΡΠ½, ΠΊΠ°Π»ΡΠΊΡΡΡΠ»ΡΠ½ |
-Ρ |
-Π½ |
63 words | ΡΡΠ΄Π°Π½Π»ΡΠ½, ΡΠΏΡΠΈΠ½ΡΡΠ½ |
-Π² |
-Π½ |
61 words | Π²Π°Π»Π°ΠΌΠΎΠ½, Π²Π°Π»ΡΣ₯ΡΡΡΡΡΠ·Π»ΡΠ½ |
-Π³ |
-Π½ |
53 words | Π³Π΅ΡΠΎΠ΅Π·Π»ΡΠ½, Π³Π΅ΡΠ±Π΅Π·Π»ΡΠ½ |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| ΠΊΠΎΠΌΠΈΡΠ΅ΡΡΡ | ΠΊΠΎΠΌΠΈΡΠ΅Ρ-Ρ-Ρ |
7.5 | Ρ |
| ΡΠ°ΠΊΡΠ»ΡΡΠ΅ΡΡΡ | ΡΠ°ΠΊΡΠ»ΡΡΠ΅Ρ-Ρ-Ρ |
7.5 | Ρ |
| ΠΏΡΠΎΡΠ΅Π½ΡΡΡΡ | ΠΏΡΠΎΡΠ΅Π½Ρ-Ρ-ΡΡ |
6.0 | ΠΏΡΠΎΡΠ΅Π½Ρ |
| ΡΡΡΠ»ΠΊΠ°ΡΡΡ | ΡΡΡΠ»ΠΊΠ°-Ρ-ΡΡ |
6.0 | ΡΡΡΠ»ΠΊΠ° |
| ΡΠΎΡΠΌΡΣ΅ΡΡΡ | ΡΠΎΡΠΌΡΣ΅-Ρ-ΡΡ |
6.0 | ΡΠΎΡΠΌΡΣ΅ |
| ΡΠΊΠΎΠ»Π°ΠΎΡΠ»Ρ | ΡΠΊΠΎΠ»Π°-ΠΎΡ-Π»Ρ |
6.0 | ΡΠΊΠΎΠ»Π° |
| Π³ΡΡΠΏΠΏΠ°ΠΎΡΠ»Ρ | Π³ΡΡΠΏΠΏΠ°-ΠΎΡ-Π»Ρ |
6.0 | Π³ΡΡΠΏΠΏΠ° |
| ΠΈΡΡΠΎΡΠΈΡΡΡ | ΠΈΡΡΠΎΡΠΈ-Ρ-ΡΡ |
6.0 | ΠΈΡΡΠΎΡΠΈ |
| ΠΎΠΊΡΡΠ³ΡΡΡΡ | ΠΎΠΊΡΡΠ³ΡΡΡ-Ρ |
4.5 | ΠΎΠΊΡΡΠ³ΡΡΡ |
| ΠΏΠ»Π°Π½Π΅ΡΠ°ΠΎΡ | ΠΏΠ»Π°Π½Π΅ΡΠ°-ΠΎΡ |
4.5 | ΠΏΠ»Π°Π½Π΅ΡΠ° |
| ΠΆΡΡΠ½Π°Π»ΠΈΡΡΠΈΠΊΠ°Ρ | ΠΆΡΡΠ½Π°Π»ΠΈΡΡΠΈΠΊΠ°-Ρ |
4.5 | ΠΆΡΡΠ½Π°Π»ΠΈΡΡΠΈΠΊΠ° |
| ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠ½ | ΡΠΈΡΡΠ΅ΠΌΠ°-ΡΠ½ |
4.5 | ΡΠΈΡΡΠ΅ΠΌΠ° |
| ΠΊΡΠ°ΡΡΠΎΠ»ΡΠ·Π΅Π½ | ΠΊΡΠ°ΡΡΠΎΠ»ΡΠ·Π΅-Π½ |
4.5 | ΠΊΡΠ°ΡΡΠΎΠ»ΡΠ·Π΅ |
| Π²ΠΎΠ·ΡΠΌΠ°ΡΠΎΠ½ | Π²ΠΎΠ·ΡΠΌΠ°ΡΠΎ-Π½ |
4.5 | Π²ΠΎΠ·ΡΠΌΠ°ΡΠΎ |
| ΡΠ°Π·Π΄Π΅Π»ΡΡΡΡΠ· | ΡΠ°Π·Π΄Π΅Π»ΡΡΡ-ΡΠ· |
4.5 | ΡΠ°Π·Π΄Π΅Π»ΡΡΡ |
6.6 Linguistic Interpretation
Automated Insight: The language Udmurt shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.56x) |
| N-gram | 2-gram | Lowest perplexity (646) |
| Markov | Context-4 | Highest predictability (97.9%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-11 02:18:53



















