Venetian - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Venetian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.304x 3.31 0.0784% 181,229
16k 3.529x 3.54 0.0837% 169,663
32k 3.715x 3.72 0.0881% 161,162
64k 3.863x πŸ† 3.87 0.0916% 155,004

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: El 256 (CCLVI en numeri romani) el xe on an del III secoΕ‚o. Avegnimenti Nasesti ...

Vocab Tokens Count
8k ▁el ▁ 2 5 6 ▁( ccl vi ▁en ▁numeri ... (+16 more) 26
16k ▁el ▁ 2 5 6 ▁( ccl vi ▁en ▁numeri ... (+16 more) 26
32k ▁el ▁ 2 5 6 ▁( ccl vi ▁en ▁numeri ... (+16 more) 26
64k ▁el ▁ 2 5 6 ▁( ccl vi ▁en ▁numeri ... (+16 more) 26

Sample 2: El 144 v.C. (CXLIV v.C par numari romani) el xe on an de el II secoΕ‚o v.C.. Aveg...

Vocab Tokens Count
8k ▁el ▁ 1 4 4 ▁v . c . ▁( ... (+32 more) 42
16k ▁el ▁ 1 4 4 ▁v . c . ▁( ... (+31 more) 41
32k ▁el ▁ 1 4 4 ▁v . c . ▁( ... (+31 more) 41
64k ▁el ▁ 1 4 4 ▁v . c . ▁( ... (+31 more) 41

Sample 3: el xe un comun del distreto de Lenzburg che el fa parte del canton Argovia in Sv...

Vocab Tokens Count
8k ▁el ▁xe ▁un ▁comun ▁del ▁distreto ▁de ▁len z burg ... (+15 more) 25
16k ▁el ▁xe ▁un ▁comun ▁del ▁distreto ▁de ▁len zburg ▁che ... (+14 more) 24
32k ▁el ▁xe ▁un ▁comun ▁del ▁distreto ▁de ▁lenzburg ▁che ▁el ... (+13 more) 23
64k ▁el ▁xe ▁un ▁comun ▁del ▁distreto ▁de ▁lenzburg ▁che ▁el ... (+13 more) 23

Key Findings

  • Best Compression: 64k achieves 3.863x compression
  • Lowest UNK Rate: 8k with 0.0784% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 4,312 12.07 91,618 40.5% 59.1%
2-gram Subword 223 πŸ† 7.80 5,564 73.1% 99.2%
3-gram Word 4,702 12.20 134,286 42.0% 60.0%
3-gram Subword 1,552 10.60 41,266 35.7% 78.3%
4-gram Word 4,657 12.19 186,223 41.4% 63.1%
4-gram Subword 7,211 12.82 219,587 24.6% 52.4%
5-gram Word 3,493 11.77 114,029 40.0% 65.3%
5-gram Subword 22,392 14.45 608,866 19.7% 41.0%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 de Ε‚a 73,737
2 el xe 70,338
3 departemento de 68,217
4 del departemento 67,585
5 altri projeti 57,004

3-grams (Word):

Rank N-gram Count
1 del departemento de 67,534
2 el xe on 51,956
3 xe on comun 48,810
4 demogrΓ fega altri projeti 42,469
5 evoΕ‚usion demogrΓ fega altri 42,466

4-grams (Word):

Rank N-gram Count
1 el xe on comun 48,761
2 evoΕ‚usion demogrΓ fega altri projeti 42,466
3 xe on comun de 41,994
4 che el fa parte 37,577
5 el fa parte del 37,224

5-grams (Word):

Rank N-gram Count
1 el xe on comun de 41,982
2 che el fa parte del 37,190
3 el fa parte del rejon 33,708
4 in fransa evoΕ‚usion demogrΓ fega altri 33,510
5 fransa evoΕ‚usion demogrΓ fega altri projeti 33,510

2-grams (Subword):

Rank N-gram Count
1 e _ 1,265,574
2 a _ 993,554
3 _ d 907,290
4 d e 819,733
5 l _ 515,433

3-grams (Subword):

Rank N-gram Count
1 _ d e 746,746
2 e l _ 427,367
3 d e _ 422,586
4 o n _ 229,675
5 _ e l 229,151

4-grams (Subword):

Rank N-gram Count
1 _ d e _ 408,249
2 _ e l _ 225,182
3 _ Ε‚ a _ 183,914
4 _ d e l 164,044
5 d e l _ 159,382

5-grams (Subword):

Rank N-gram Count
1 _ d e l _ 159,062
2 p a r t e 129,822
3 o _ d e _ 120,109
4 e _ Ε‚ a _ 117,322
5 s i o n _ 95,313

Key Findings

  • Best Perplexity: 2-gram (subword) with 223
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~41% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.8047 1.747 5.60 282,129 19.5%
1 Subword 0.8604 1.816 6.21 2,732 14.0%
2 Word 0.2918 1.224 1.77 1,575,997 70.8%
2 Subword 0.8328 1.781 5.24 16,965 16.7%
3 Word 0.1167 1.084 1.22 2,791,577 88.3%
3 Subword 0.7829 1.721 4.23 88,847 21.7%
4 Word 0.0422 πŸ† 1.030 1.06 3,391,639 95.8%
4 Subword 0.6983 1.623 3.15 375,778 30.2%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. de ła provinsa de ła xe un sècoło v c co el ga susitò i ritràti
  2. el xe na part abitasion privada che Ε‚a comunitΓ  autΓ²noma de 89 abitanti del film montΓ 
  3. Ε‚a provinsa de 479 abitanti del primo caxo asoΕ‚utivo ergativo asoΕ‚utivo el fa parte del departemento

Context Size 2:

  1. de Ε‚a provinsa de groninga na picenina organizasion ciamada dont make me feel brand new bag i
  2. el xe on comun marcΓ  del distreto de scheibbs del distreto de bruck an der leitha che
  3. departemento de nord che el fa parte del rejon nova acuitania in fransa evoΕ‚usion demogrΓ fega altri ...

Context Size 3:

  1. del departemento de haute saΓ΄ne che el fa parte del rejon alvergna rodano alpe in fransa evoΕ‚usion d...
  2. el xe on comun de Ε‚a spagna situΓ  inte Ε‚a provinsa de alicante che Ε‚a fa parte de
  3. xe on comun de 146 abitanti del departemento de lozère che el fa parte del del stato de

Context Size 4:

  1. el xe on comun de 476 abitanti del departemento de vaucluse che el fa parte del rejon grand est
  2. evoΕ‚usion demogrΓ fega altri projeti del departemento de drΓ΄me che el fa parte del stato de Ε‚a alta Γ ...
  3. xe on comun de 516 abitanti del departemento de cΓ΄te d or che el fa parte del rejon ositΓ nia

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _lttintuzel-2_po
  2. e_(li_onsetforo_
  3. ali_densè_pare,_

Context Size 2:

  1. e_oire_de_unìodo_
  2. a_proverssensa_de
  3. _deorquandopartom

Context Size 3:

  1. _de_183_abitanti_d
  2. el_bas-rhΓ΄ne-frang
  3. de_ave_al_de_sento

Context Size 4:

  1. _de_aisne_-_lujo_de
  2. _el_fa_par_posti_de
  3. _Ε‚a_u_partemento_de

Key Findings

  • Best Predictability: Context-4 (word) with 95.8% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (375,778 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 119,267
Total Tokens 5,515,860
Mean Frequency 46.25
Median Frequency 4
Frequency Std Dev 1838.83

Most Common Words

Rank Word Frequency
1 de 422,791
2 el 251,936
3 Ε‚a 185,729
4 del 159,907
5 xe 95,799
6 e 88,103
7 che 86,802
8 in 85,859
9 l 73,523
10 departemento 68,444

Least Common Words (from vocabulary)

Rank Word Frequency
1 gΓΌvenli 2
2 taşımacılık 2
3 sunuyoruz 2
4 edebilirsiniz 2
5 parΓ§a 2
6 sensorial 2
7 complicada 2
8 caregari 2
9 sabigotho 2
10 pauΕ‚ista 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 1.0353
RΒ² (Goodness of Fit) 0.998145
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 56.8%
Top 1,000 72.7%
Top 5,000 83.6%
Top 10,000 88.2%

Key Findings

  • Zipf Compliance: RΒ²=0.9981 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 56.8% of corpus
  • Long Tail: 109,267 words needed for remaining 11.8% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.7685 0.3278 N/A N/A
mono_64d 64 0.7720 πŸ† 0.2784 N/A N/A
mono_128d 128 0.7461 0.2091 N/A N/A
aligned_32d 32 0.7685 0.3249 0.0880 0.3700
aligned_64d 64 0.7720 0.2747 0.1500 0.4740
aligned_128d 128 0.7461 0.2092 0.2280 0.5740

Key Findings

  • Best Isotropy: mono_64d with 0.7720 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.2707. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 22.8% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap 0.594 High formulaic/idiomatic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-s sosiaΕ‚izasion, scumisi, sarr
-a antegamente, adeti, anthology
-c cctv, cussìta, coṅkiṅ
-p presidensa, palΓ‘cio, pinin
-m mathieu, mesonΓ , megaΕ‚o
-ma mathieu, maxistero, maschi
-b bajijo, baloo, baΕ‚ene
-ca cale, canaΕ‚izasion, caronte

Productive Suffixes

Suffix Examples
-e garantise, erdre, antegamente
-a taxa, fondarìa, presidensa
-o energetico, palΓ‘cio, successivo
-i scumisi, laΓ³ri, lupi
-n sosiaΕ‚izasion, eugen, pinin
-on sosiaΕ‚izasion, canaΕ‚izasion, musurareon
-s infos, snows, gladys
-te antegamente, facontinente, desferente

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
ento 2.32x 93 contexts bento, vento, zento
ment 1.96x 170 contexts menti, mento, mente
altr 2.16x 43 contexts altri, altra, altre
ltri 2.56x 18 contexts altri, altria, filtri
emen 1.75x 64 contexts hemen, iemen, yemen
oΕ‚us 2.58x 15 contexts moΕ‚uski, moΕ‚usco, soΕ‚usion
omun 1.94x 36 contexts comun, komun, comune
itan 1.53x 95 contexts titan, kitang, gitana
ejon 2.32x 17 contexts rejon, lejon, prejon
fega 2.03x 25 contexts fegato, sΓ²fega, grafega
comu 2.07x 18 contexts comun, comum, comune
epar 1.69x 35 contexts separa, separà, separè

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-c -e 151 words canpanarie, conosΓΉe
-c -a 141 words coΕ‚ΓΉnbia, coΕ‚onia
-s -o 125 words sapporo, situato
-s -a 119 words scrita, stamperia
-c -o 114 words cantabrico, contatto
-s -e 112 words sdrΓΉcioΕ‚e, severamente
-p -o 107 words primo, perìgoło
-p -e 106 words percepire, prostituzione
-s -i 104 words sigismondi, squilli
-c -i 99 words culti, conservatrici

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
costituindo costitu-in-do 7.5 in
continuando continu-an-do 7.5 an
teΕ‚evizore teΕ‚eviz-o-re 7.5 o
mareΕ‚Γ©ngua ma-re-Ε‚Γ©ngua 7.5 Ε‚Γ©ngua
festixava festix-a-va 7.5 a
anaΕ‚Γ²xego anaΕ‚Γ²x-e-go 7.5 e
vendidori vendid-o-ri 7.5 o
discontinuitΓ  discontinu-i-tΓ  7.5 i
francoboΕ‚i francob-o-Ε‚i 7.5 o
charleroi charler-o-i 7.5 o
sommières sommiè-re-s 7.5 re
giacobini giacob-i-ni 7.5 i
incorpando incorp-an-do 7.5 an
sicatrise sicat-ri-se 7.5 ri
partecipaxion partecipax-i-on 7.5 i

6.6 Linguistic Interpretation

Automated Insight: The language Venetian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.

Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (3.86x)
N-gram 2-gram Lowest perplexity (223)
Markov Context-4 Highest predictability (95.8%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-11 03:08:09

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/vec