bert-medium-amharic-32k-512
This model is a fine-tuned version of yosefw/bert-medium-amharic-32k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3732
- Model Preparation Time: 0.0032
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 1000
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
|---|---|---|---|---|
| 6.4287 | 0.1249 | 1038 | 6.0928 | 0.0032 |
| 4.3089 | 0.2498 | 2076 | 2.7613 | 0.0032 |
| 2.9408 | 0.3746 | 3114 | 2.6226 | 0.0032 |
| 2.7729 | 0.4995 | 4152 | 2.5546 | 0.0032 |
| 2.7064 | 0.6244 | 5190 | 2.5169 | 0.0032 |
| 2.671 | 0.7493 | 6228 | 2.4976 | 0.0032 |
| 2.6433 | 0.8742 | 7266 | 2.4775 | 0.0032 |
| 2.629 | 0.9990 | 8304 | 2.4665 | 0.0032 |
| 2.6087 | 1.1239 | 9342 | 2.4526 | 0.0032 |
| 2.602 | 1.2488 | 10380 | 2.4521 | 0.0032 |
| 2.5924 | 1.3737 | 11418 | 2.4354 | 0.0032 |
| 2.5861 | 1.4986 | 12456 | 2.4494 | 0.0032 |
| 2.5771 | 1.6234 | 13494 | 2.4360 | 0.0032 |
| 2.5747 | 1.7483 | 14532 | 2.4284 | 0.0032 |
| 2.5708 | 1.8732 | 15570 | 2.4257 | 0.0032 |
| 2.5648 | 1.9981 | 16608 | 2.4186 | 0.0032 |
| 2.5582 | 2.1230 | 17646 | 2.4068 | 0.0032 |
| 2.5496 | 2.2478 | 18684 | 2.4118 | 0.0032 |
| 2.5483 | 2.3727 | 19722 | 2.4128 | 0.0032 |
| 2.5411 | 2.4976 | 20760 | 2.4060 | 0.0032 |
| 2.5425 | 2.6225 | 21798 | 2.4060 | 0.0032 |
| 2.5359 | 2.7474 | 22836 | 2.3902 | 0.0032 |
| 2.5318 | 2.8722 | 23874 | 2.3837 | 0.0032 |
| 2.5284 | 2.9971 | 24912 | 2.3903 | 0.0032 |
| 2.5249 | 3.1220 | 25950 | 2.3840 | 0.0032 |
| 2.5189 | 3.2469 | 26988 | 2.3985 | 0.0032 |
| 2.521 | 3.3718 | 28026 | 2.3796 | 0.0032 |
| 2.518 | 3.4966 | 29064 | 2.3793 | 0.0032 |
| 2.5115 | 3.6215 | 30102 | 2.3871 | 0.0032 |
| 2.5154 | 3.7464 | 31140 | 2.3819 | 0.0032 |
| 2.5134 | 3.8713 | 32178 | 2.3878 | 0.0032 |
| 2.5085 | 3.9962 | 33216 | 2.3882 | 0.0032 |
| 2.5065 | 4.1210 | 34254 | 2.3822 | 0.0032 |
| 2.5057 | 4.2459 | 35292 | 2.3722 | 0.0032 |
| 2.505 | 4.3708 | 36330 | 2.3681 | 0.0032 |
| 2.5015 | 4.4957 | 37368 | 2.3824 | 0.0032 |
| 2.504 | 4.6205 | 38406 | 2.3689 | 0.0032 |
| 2.4989 | 4.7454 | 39444 | 2.3659 | 0.0032 |
| 2.4993 | 4.8703 | 40482 | 2.3707 | 0.0032 |
| 2.4995 | 4.9952 | 41520 | 2.3767 | 0.0032 |
| 2.4977 | 5.1201 | 42558 | 2.3656 | 0.0032 |
| 2.4974 | 5.2449 | 43596 | 2.3731 | 0.0032 |
| 2.4936 | 5.3698 | 44634 | 2.3636 | 0.0032 |
| 2.4921 | 5.4947 | 45672 | 2.3629 | 0.0032 |
| 2.4932 | 5.6196 | 46710 | 2.3716 | 0.0032 |
| 2.4958 | 5.7445 | 47748 | 2.3661 | 0.0032 |
| 2.4917 | 5.8693 | 48786 | 2.3650 | 0.0032 |
| 2.4948 | 5.9942 | 49824 | 2.3702 | 0.0032 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 14