YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Evo1 R1Pro Stage 1 Checkpoints
Stage 1 training checkpoints for Evo-1 model on R1Pro dataset (2025 Challenge Task 0006).
Training Details
Dataset: R1Pro 2025-challenge-demos-task0006
- 200 episodes, 1.5M frames
- 3 RGB camera views (head, left_wrist, right_wrist)
- 24-dim state features (selected from 256-dim observation)
Model Configuration:
- Base model: OpenGVLab/InternVL3-1B
- Action head: Flow Matching
- Image size: 448x448
- Horizon: 50
- Action dim: 24
- State dim: 24
Stage 1 Training (Action Head Only):
- Max steps: 5000
- Batch size: 16
- Learning rate: 1e-5
- Dropout: 0.2
- Weight decay: 1e-3
- Warmup steps: 1000
- Grad clip norm: 1.0
- Trainable parameters: 122.03M (action head + integration module)
- Frozen parameters: 648.69M (VLM)
Training Speed:
- ~3.43 seconds/step with 4 DataLoader workers + GPU TorchCodec
- Total training time: ~4.8 hours
Technology Stack:
- PyTorch 2.8.0 (CUDA 12.9)
- TorchCodec 0.8.1 (GPU-accelerated video decoding)
- DeepSpeed ZeRO Stage 2
- 4 DataLoader workers with spawn multiprocessing
Checkpoints
All checkpoints saved every 500 steps:
step_500throughstep_5000(regular checkpoints)step_best- Best performing checkpointstep_final- Final checkpoint
Each checkpoint contains:
mp_rank_00_model_states.pt- Model weights (~2.7GB)bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt- Optimizer states (~1.4GB)config.json- Model configurationnorm_stats.json- Normalization statistics
Usage
For Stage 2 training (full VLM finetuning), use:
--resume --resume_pretrain --resume_path step_best
State Indices
Selected 24 state features from 256-dim observation:
- Left arm joints: 158-164 (7 dims)
- Right arm joints: 197-203 (7 dims)
- Left gripper: 193-194 (2 dims)
- Right gripper: 232-233 (2 dims)
- Trunk position: 236-239 (4 dims)
- Trunk velocity: 240-241 (2 dims)
Training Loss
Initial: 0.6719 → Final: ~0.53 (decreasing trend)
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support